• Title/Summary/Keyword: SSP-RCP scenario

Search Result 10, Processing Time 0.021 seconds

Projecting future hydrological and ecological droughts with the climate and land use scenarios over the Korean peninsula (기후 및 토지이용 변화 시나리오 기반 한반도 미래 수문학적 및 생태학적 가뭄 전망)

  • Lee, Jaehyeong;Kim, Yeonjoo;Chae, Yeora
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.427-436
    • /
    • 2020
  • It is uncertain how global climate change will influence future drought characteristics over the Korean peninsula. This study aims to project the future droughts using climate change and land use change scenarios over the Korean peninsula with the land surface modeling system, i.e., Weather Research and Forecasting Model Hydrological modeling system (WRF-Hydro). The Representative Concentration Pathways (RCPs) 2.6 and 8.5 are used as future climate scenarios and the Shared Socio-economic Pathways (SSPs), specifically SSP2, is adopted for the land use scenario. The using Threshold Level Method (TLM), we identify future hydrological and ecological drought events with runoff and Net Primary Productivity (NPP), respectively, and assess drought characteristics of durations and intensities in different scenarios. Results show that the duration of drought is longer over RCP2.6-SSP2 for near future (2031-2050) and RCP8.5-SSP2 (2080-2099) for the far future for hydrological drought. On the other hand, RCP2.6-SSP2 for the far future and RCP8.5-SSP2 for the near future show longer duration for ecological drought. In addition, the drought intensities in both hydrological and ecological drought show different characteristics with the drought duration. The intensity of the hydrological droughts was greatly affected by threshold level methods and RCP2.6-SSP2 for far future shows the severest intensity. However, for ecological drought, the difference of the intensity among the threshold level is not significant and RCP2.6-SSP2 for near future and RCP2.6-SSP2 for near future show the severest intensity. This study suggests a possible future drought characteristics is in the Korea peninsula using combined climate and land use changes, which will help the community to understand and manage the future drought risks.

Changes in Mean Temperature and Warmth Index on the Korean Peninsula under SSP-RCP Climate Change Scenarios (SSP-RCP 기후변화 시나리오 기반 한반도의 평균 기온 및 온량지수 변화)

  • Jina Hur;Yongseok Kim;Sera Jo;Eung-Sup Kim;Mingu Kang;Kyo-Moon Shim;Seung-Gil Hong
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.123-138
    • /
    • 2024
  • Using 18 multi-model-based a Shared Socioeconomic Pathway (SSP) and Representative Concentration Pathways (RCP) climate change scenarios, future changes in temperature and warmth index on the Korean Peninsula in the 21st century (2011~2100) were analyzed. In the analysis of the current climate (1981~2010), the ensemble averaged model results were found to reproduce the observed average values and spatial patterns of temperature and warmth index similarly well. In the future climate projections, temperature and warmth index are expected to rise in the 21st century compared to the current climate. They go further into the future and the higher carbon scenario (SSP5-8.5), the larger the increase. In the 21st century, in the low-carbon scenario (SSP1-2.6), temperature and warmth index are expected to rise by about 2.5℃ and 24.6%, respectively, compared to the present, while in the high-carbon scenario, they are expected to rise by about 6.2℃ and 63.9%, respectively. It was analyzed that reducing carbon emissions could contribute to reducing the increase in temperature and warmth index. The increase in the warmth index due to climate change can be positively analyzed to indicate that the effective heat required for plant growth on the Korean Peninsula will be stably secured. However, it is necessary to comprehensively consider negative aspects such as changes in growth conditions during the plant growth period, increase in extreme weather such as abnormally high temperatures, and decrease in plant diversity. This study can be used as basic scientific information for adapting to climate change and preparing response measures.

Climatic Yield Potential Changes Under Climate Change over Korean Peninsula Using 1-km High Resolution SSP-RCP Scenarios (고해상도(1km) SSP-RCP시나리오 기반 한반도의 벼 기후생산력지수 변화 전망)

  • Sera Jo;Yong-Seok Kim;Jina Hur;Joonlee Lee;Eung-Sup Kim;Kyo-Moon Shim;Mingu Kang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.284-301
    • /
    • 2023
  • The changes in rice climatic yield potential (CYP) across the Korean Peninsula are evaluated based on the new climate change scenario produced by the National Institute of Agricultural Sciences with 18 ensemble members at 1 km resolution under a Shared Socioeconomic Pathway (SSP) and Representative Concentration Pathways (RCP) emission scenarios. To overcome the data availability, we utilize solar radiation f or CYP instead of sunshine duration which is relatively uncommon in the climate prediction f ield. The result show that maximum CYP(CYPmax) decreased, and the optimal heading date is progressively delayed under warmer temperature conditions compared to the current climate. This trend is particularly pronounced in the SSP5-85 scenario, indicating faster warming, except for the northeastern mountainous regions of North Korea. This shows the benef its of lower emission scenarios and pursuing more efforts to limit greenhouse gas emissions. On the other hand, the CYPmax shows a wide range of feasible futures, which shows inherent uncertainties in f uture climate projections and the risks when analyzing a single model or a small number of model results, highlighting the importance of the ensemble approach. The f indings of this study on changes in rice productivity and uncertainties in temperature and solar radiation during the 21st century, based on climate change scenarios, hold value as f undamental information for climate change adaptation efforts.

Assessment of Future Flood According to Climate Change, Rainfall Distribution and CN (기후변화와 강우분포 및 CN에 따른 미래 홍수량 평가)

  • Kwak, Jihye;Kim, Jihye;Jun, Sang Min;Hwang, Soonho;Lee, Sunghack;Lee, Jae Nam;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.85-95
    • /
    • 2020
  • According to the standard guidelines of design flood (MLTM, 2012; MOE, 2019), the design flood is calculated based on past precipitation. However, due to climate change, the frequency of extreme rainfall events is increasing. Therefore, it is necessary to analyze future floods' volume by using climate change scenarios. Meanwhile, the standard guideline was revised by MOE (Ministry of Environment) recently. MOE proposed modified Huff distribution and new CN (Curve Number) value of forest and paddy. The objective of this study was to analyze the change of flood volume by applying the modified Huff and newly proposed CN to the probabilistic precipitation based on SSP and RCP scenarios. The probabilistic rainfall under climate change was calculated through RCP 4.5/8.5 scenarios and SSP 245/585 scenarios. HEC-HMS (Hydrologic Engineering Center - Hydrologic Modeling System) was simulated for evaluating the flood volume. When RCP 4.5/8.5 scenario was changed to SSP 245/585 scenario, the average flood volume increased by 627 ㎥/s (15%) and 523 ㎥/s (13%), respectively. By the modified Huff distribution, the flood volume increased by 139 ㎥/s (3.76%) on a 200-yr frequency and 171 ㎥/s (4.05%) on a 500-yr frequency. The newly proposed CN made the future flood value increase by 9.5 ㎥/s (0.30%) on a 200-yr frequency and 8.5 ㎥/s (0.25%) on a 500-yr frequency. The selection of climate change scenario was the biggest factor that made the flood volume to transform. Also, the impact of change in Huff was larger than that of CN about 13-16 times.

A Study on Statistical Characteristics for Extreme Rainfall based on CMIP6 SSP scenario - Focused on Busan Metropolitan City (CMIP6 SSP 시나리오 극한 강우량의 통계적 특성 연구 - 부산광역시를 중심으로)

  • Kim, Sunghun;Kim, Heechul;Kim, Gyobeom;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.410-410
    • /
    • 2022
  • 기후변화에 관한 정부간 협의체(Intergovernmental Panel on Climate Change, IPCC)에서는 지난해부터 제6차 평가보고서(Sixth Assessment Report, AR6)를 준비하고 있으며, 최근 Working Group II에서 수행한 기후변화 영향, 적응 및 취약성(Impacts, Adaptation and Vulnerability) 보고서를 공개하였다. 보고서는 기존의 Representative Concentration Pathway (RCP) 시나리오에 사회경제적 조건을 추가로 고려한 Shared Socioeconomic Pathway (SSP) 시나리오를 제시하였고, 세계기후연구프로그램(World Climate Research Programme, WCRP)의 Coupled Model Intercomparison Project (CMIP)에서 제공하는 6단계(Phase 6) 미래 전망 자료를 적용하였다. 본 연구에서는 기후변화로 인한 미래 극한 강우량의 통계적 특성을 파악하기 위하여 CMIP6에서 제공하는 General Circulation Models (GCMs) 기반 미래 강우자료를 수집하여 부산광역시를 중심으로 분석하였다. 4개의 SSP (SSP126, SSP245, SSP370, SSP585) 시나리오별로 10개 GCMs의 모의 결과를 사용하였다. Gumbel 분포형과 확률가중모멘트법을 이용하여 미래 극한 강우량을 산정하였고, 현재 모의기간(S0, 1983-2014) 대비 미래 전망기간(S1, 2015-2044; S2, 2041-2070; S3, 2071-2100)의 변화를 재현기간(return period, T)별로 분석하여 제시하였다.

  • PDF

Hydrological drought risk assessment for climate change adaptation in South Korea (기후변화 적응을 위한 우리나라 수문학적 가뭄 위험도 평가)

  • Seo, Jungho;Chi, Haewon;Kim, Heey Jin;Kim, Yeonjoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.421-435
    • /
    • 2022
  • As natural disasters have been increasing due to climate change, sustainable solutions are in need to alleviate the degree of drought hazard, assess and project the drought influence based on future climate change scenarios. In assessing drought risk, socio-economic factors of the region must be considered along with meteorological factors. This study categorized drought hazard, exposure, and vulnerability as three major components of drought risk according to the Intergovernmental panel on Climate Change (IPCC) risk assessment framework, and selected indices for each component to quantify the drought risk in South Korea according to the mid-size basins. Combinations of climate scenarios (Representative Concentration Pathway; RCP 2.6 and RCP 8.5) and socio-economic scenarios (Shared Socio-economic Pathways; SSP 1, SSP2 and SSP3) for the near future (2030-2050) ant the far future (2080-2099) were utilized in drought risk analysis, and results were compared with the historical data (1986-2005). In general, the drought risks for all scenarios shows large increases as time proceeds to the far furture. In addition, we analyzed the rank of drought hazard, exposure, vulnerability for drought risk, and each of their contribution. The results showed that the drought hazard is the most contributing component to the increase of drought risk in future and each basin shows varying contributing components. Finally, we suggested countermeasures for each basin according to future climate change scenarios, and thus this study provides made the basis for establishing drought management measures.

Assessment of Water Use Vulnerability Considering Climate and Socioeconomic Changes in Han River Watershed (기후 및 사회·경제 변화를 고려한 한강 유역의 물이용 취약성 평가)

  • Park, Hyesun;Kim, Heey Jin;Chae, Yeora;Kim, Yeonjoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.965-972
    • /
    • 2017
  • Assessment of vulnerability of water use to climate change include a variety of climate change scenarios. However, in most future vulnerability studies, only the climate change scenarios are used and not the future scenarios of social and economic indicators. Therefore, in this study, we applied the Representative Concentration Pathway (RCP) climate change scenario and Shared Socioeconomic reference Pathway (SSP) developed by IPCC to reflect the future. We selected indicators for estimating the vulnerability of water use, and indices were integrated with a multi-criteria decision making approach - Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The indicator data utilized national statistics and reports, social and economic scenarios, and simulated results from the Soil and Water Assessment Tool (SWAT) model which reflects climate change scenario. Finally, we derived the rankings of water use vulnerability for the short-term future (2020) and mid-term future (2050) within the Han River watershed. Generally, considering climate change alone and considering climate change plus social and economic changes showed a similar spatial distribution. In the future scenarios, the watershed rankings were similar, but showed differences with SSP scenario in some watersheds. Therefore, considering social and economic changes is expected to contribute to more effective responses to climate change.

Assessment of the Potential Impact of Climate Change on the Drought in Agricultural Reservoirs under SSP Scenarios (SSP 시나리오를 고려한 농업용 저수지의 이수측면 잠재영향평가)

  • Kim, Siho;Jang, Min-Won;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.2
    • /
    • pp.35-52
    • /
    • 2024
  • This study conducted an assessment of potential impacts on the drought in agricultural reservoirs using the recently proposed SSP (Shared Socioeconomic Pathways) scenarios by IPCC (Intergovernmental Panel on Climate Change). This study assesses the potential impact of climate change on agricultural water resources and infrastructure vulnerability within Gyeongsangnam-do, focusing on 15 agricultural reservoirs. The assessment was based on the KRC (Korea Rural Community Corporation) 1st vulnerability assessment methodology using RCP scenarios for 2021. However, there are limitations due to the necessity for climate impact assessments based on the latest climate information and the uncertainties associated with using a single scenario from national standard scenarios. Therefore, we applied the 13 GCM (General Circulation Model) outputs based on the newly introduced SSP scenarios. Furthermore, due to difficulties in data acquisiton, we reassessed potential impacts by redistributing weights for proxy variables. As a main result, with lower future potential impacts observed in areas with higher precipitation along the southern coast. Overall, the potential impacts increased for all reservoirs as we moved into the future, maintaining their relative rankings, yet showing no significant variability in the far future. Although the overall pattern of potential impacts aligns with previous evaluations, reevaluation under similar conditions with different spatial resolutions emphasizes the critical role of meteorological data spatial resolution in assessments. The results of this study are expected to improve the credibility and accuracy formulation of vulnerability employing more scientific predictions.

Prediction of Species Distribution Changes for Key Fish Species in Fishing Activity Protected Areas in Korea (국내 어업활동보호구역 주요 어종의 종분포 변화 예측)

  • Hyeong Ju Seok;Chang Hun Lee;Choul-Hee Hwang;Young Ryun Kim;Daesun Kim;Moon Suk Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.802-811
    • /
    • 2023
  • Marine spatial planning (MSP) is a crucial element for rational allocation and sustainable use of marine areas. Particularly, Fishing Activity Protected Areas constitute essential zones accounting for 45.6% designated for sustainable fishing activities. However, the current assessment of these zones does not adequately consider future demands and potential values, necessitating appropriate evaluation methods and predictive tools for long-term planning. In this study, we selected key fish species (Scomber japonicus, Trichiurus lepturus, Engraulis japonicus, and Larimichthys polyactis) within the Fishing Activity Protected Area to predict their distribution and compare it with the current designated zones for evaluating the ability of the prediction tool. Employing the Intergovernmental Panel on Climate Change (IPCC) 6th Assessment Report scenarios (SSP1-2.6 and SSP5-8.5), we used species distribution models (such as MaxEnt) to assess the movement and distribution changes of these species owing to future variations. The results indicated a 30-50% increase in the distribution area of S. japonicus, T. lepturus, and L. polyactis, whereas the distribution area of E. japonicus decreased by approximately 6-11%. Based on these results, a species richness map for the four key species was created. Within the marine spatial planning boundaries, the overlap between areas rated "high" in species richness and the Fishing Activity Protected Area was approximately 15%, increasing to 21% under the RCP 2.6 scenario and 34% under the RCP 8.5 scenario. These findings can serve as scientific evidence for future evaluations of use zones or changes in reserve areas. The current and predicted distributions of species owing to climate change can address the limitations of current use zone evaluations and contribute to the development of plans for sustainable and beneficial use of marine resources.

Projecting the Spatio-Temporal Change in Yield Potential of Kimchi Cabbage (Brassica campestris L. ssp. pekinensis) under Intentional Shift of Planting Date (정식일 이동에 따른 배추 잠재수량성의 시공간적 변화 전망)

  • Kim, Jin-Hee;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.298-306
    • /
    • 2016
  • Planting date shift is one of the means of adapting to climate change in Kimchi Cabbage growers in major production areas in Korea. This study suggests a method to estimate the potential yield of Kimchi Cabbage based on daily temperature accumulation during the growth period from planting to maturity which is determined by a plant phenology model tuned to Kimchi Cabbage. The phenology model converts any changes in the thermal condition caused by the planting date shift into the heat unit accumulation during the growth period, which can be calculated from daily temperatures. The physiological maturity is estimated by applying this model to a variable development rate function depending either on growth or heading stage. The cabbage yield prediction model (Ahn et al., 2014) calculates the potential yield of summer cabbage by accumulating daily heat units for the growth period. We combined these two models and applied to the 1km resolution climate scenario (2000-2100) based on RCP8.5 for South Korea. Potential yields in the current normal year (2001-2010) and the future normal year (2011-2040, 2041-2070, and 2071-2100) were estimated for each grid cell with the planting dates of July 1, August 1, September 1, and October 1. Based on the results, we divided the whole South Korea into 810 watersheds, and devised a three - dimensional evaluation chart of the time - space - yield that enables the user to easily find the optimal planting date for a given watershed. This method is expected to be useful not only for exploring future new cultivation sites but also for developing cropping systems capable of adaptation to climate change without changing varieties in existing production areas.