• Title/Summary/Keyword: SSLs

Search Result 5, Processing Time 0.018 seconds

Verification of mean volume backscattering strength from acoustic doppler current profiler by using calibrated sphere method (교정구에 의한 음향 도플러유향유속계의 평균 체적후방산란강도 검토)

  • Yang, Yong-Su;Lee, Kyounghoon;Lee, Dae-Jae;Lee, Dong-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.4
    • /
    • pp.551-555
    • /
    • 2014
  • ADCPs have been widely used to estimate the dynamic characteristics and biomass of sound scattering layers (SSLs), and swimming speed of fish schools for analyzing SSLs spatial distribution and/or various behavior patterns. This result showed that the verification of the mean volume backscattering strength (MVBS or averaged SV, dB) acquired by the ADCP would be necessary for a quantitative analysis on the spatial distribution and the biomass estimation of the SSLs or fish school when ADCP is used for estimating their biomass. In addition, the calibrated sphere method was used to verify values of each MVBS obtained from 4 beams of ADCP (153.6 kHz) on the base of 3 frequencies (38, 120, 200 kHz) of Scientific echo sounder's split beam system. Then, the measured SV values were compared and analyzed in its Target Strength (TS, dB) values estimated by a theoretical acoustic scattering model.

Measurement of vertical migration speed of Sound Scattering Layer using an bottom mooring type Acoustic Doppler Current Profiler (해저설치형 음향도플러유향유속계를 이용한 음향산란층의 연직이동속도 측정)

  • Jo, Hyeon-Jeong;Lee, Kyoung-Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.4
    • /
    • pp.449-457
    • /
    • 2010
  • This study shows that the vertical migration speed of sound scattering layers (SSLs), which is distributed in near Funka Bay, were measured by 3D velocity components acquired from a bottom moorng ADCP. While the bottom mooring type has a problem to measure the velocity vectors of sound scattering layer distributed near to surface, both the continuous vertical migration patterns and variability of backscatterers were routinely investigated as well. In addition, the velocity vectors were compared with the vertical migration velocity estimated from echograms of Mean Volume Backscattering Strength, and estimated to produce observational bias due to SSLs which is composed of backscatterers such as euphausiids, nekton, and fishes have swimming ability.

Timing Jitter Analysis and Improvement Method using Single-Shot LiDAR system (Single-Shot LiDAR system을 이용한 Timing Jitter 분석 및 개선 방안)

  • Han, Mun-hyun;Choi, Gyu-dong;Song, Min-hyup;Seo, Hong-seok;Mheen, Bong-ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.172-175
    • /
    • 2016
  • Time of Flight(ToF) LiDAR(Light Detection And Ranging) technology has been used for distance measurement and object detection by measuring ToF time information. This technology has been evolved into higher precision measurement field such like autonomous driving car and terrain analysis since the retrieval of exact ToF time information is of prime importance. In this paper, as a accuracy indicator of the ToF time information, timing jitter was measured and analyzed through Single-Shot LiDAR system(SSLs) mainly consisting of 1.5um wavelength MOPA LASER, InGaAs Avalanche Photodiode(APD) at 31M free space environment. Additionally, we applied spline interpolation and multiple-shot averaging method on measured data through SSLs to improve ToF timing information.

  • PDF

Analysis of Eye-safe LIDAR Signal under Various Measurement Environments and Reflection Conditions (다양한 측정 환경 및 반사 조건에 대한 시각안전 LIDAR 신호 분석)

  • Han, Mun Hyun;Choi, Gyu Dong;Seo, Hong Seok;Mheen, Bong Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.5
    • /
    • pp.204-214
    • /
    • 2018
  • Since LIDAR is advantageous for accurate information acquisition and realization of a high-resolution 3D image based on characteristics that can be precisely measured, it is essential to autonomous navigation systems that require acquisition and judgment of accurate peripheral information without user intervention. Recently, as an autonomous navigation system applying LIDAR has been utilized in human living space, it is necessary to solve the eye-safety problem, and to make reliable judgment through accurate obstacle recognition in various environments. In this paper, we construct a single-shot LIDAR system (SSLs) using a 1550-nm eye-safe light source, and report the analysis method and results of LIDAR signals for various measurement environments, reflective materials, and material angles. We analyze the signals of materials with different reflectance in each measurement environment by using a 5% Al reflector and a building wall located at a distance of 25 m, under indoor, daytime, and nighttime conditions. In addition, signal analysis of the angle change of the material is carried out, considering actual obstacles at various angles. This signal analysis has the merit of possibly confirming the correlation between measurement environment, reflection conditions, and LIDAR signal, by using the SNR to determine the reliability of the received information, and the timing jitter, which is an index of the accuracy of the distance information.

Korean guidelines for postpolypectomy colonoscopic surveillance: 2022 revised edition

  • Su Young Kim;Min Seob Kwak;Soon Man Yoon;Yunho Jung;Jong Wook Kim;Sun-Jin Boo;Eun Hye Oh;Seong Ran Jeon;Seung-Joo Nam;Seon-Young Park;Soo-Kyung Park;Jaeyoung Chun;Dong Hoon Baek;Mi-Young Choi;Suyeon Park;Jeong-Sik Byeon;Hyung Kil Kim;Joo Young Cho;Moon Sung Lee;Oh Young Lee;Korean Society of Gastrointestinal Endoscopy;Korean Society of Gastroenterology;Korean Association for the Study of Intestinal Diseases
    • Clinical Endoscopy
    • /
    • v.55 no.6
    • /
    • pp.703-725
    • /
    • 2022
  • Colonoscopic polypectomy is effective in decreasing the incidence and mortality of colorectal cancer (CRC). Premalignant polyps discovered during colonoscopy are associated with the risk of metachronous advanced neoplasia. Postpolypectomy surveillance is the most important method for the management of advanced metachronous neoplasia. A more efficient and evidence-based guideline for postpolypectomy surveillance is required because of limited medical resources and concerns regarding colonoscopy complications. In these consensus guidelines, an analytic approach was used to address all reliable evidence to interpret the predictors of CRC or advanced neoplasia during surveillance colonoscopy. The key recommendations state that the high-risk findings for metachronous CRC following polypectomy are as follows: (1) adenoma ≥10 mm in size; (2) 3 to 5 (or more) adenomas; (3) tubulovillous or villous adenoma; (4) adenoma containing high-grade dysplasia; (5) traditional serrated adenoma; (6) sessile serrated lesion (SSL) containing any grade of dysplasia; (7) serrated polyp of at least 10 mm in size; and (8) 3 to 5 (or more) SSLs. More studies are needed to fully comprehend the patients most likely to benefit from surveillance colonoscopy and the ideal surveillance interval to prevent metachronous CRC.