• Title/Summary/Keyword: SSI Algorithm

Search Result 26, Processing Time 0.018 seconds

Design and experimental characterization of a novel passive magnetic levitating platform

  • Alcover-Sanchez, R.;Soria, J.M.;Perez-Aracil, J.;Pereira, E.;Diez-Jimenez, E.
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.499-512
    • /
    • 2022
  • This work proposes a novel contactless vibration damping and thermal isolation tripod platform based on Superconducting Magnetic Levitation (SML). This prototype is suitable for cryogenic environments, where classical passive, semi active and active vibration isolation techniques may present tribological problems due to the low temperatures and/or cannot guarantee an enough thermal isolation. The levitating platform consists of a Superconducting Magnetic Levitation (SML) with inherent passive static stabilization. In addition, the use of Operational Modal Analysis (OMA) technique is proposed to characterize the transmissibility function from the baseplate to the platform. The OMA is based on the Stochastic Subspace Identification (SSI) by using the Expectation Maximization (EM) algorithm. This paper contributes to the use of SSI-EM for SML applications by proposing a step-by-step experimental methodology to process the measured data, which are obtained with different unknown excitations: ambient excitation and impulse excitation. Thus, the performance of SSI-EM for SML applications can be improved, providing a good estimation of the natural frequency and damping ratio without any controlled excitation, which is the main obstacle to use an experimental modal analysis in cryogenic environments. The dynamic response of the 510 g levitating platform has been characterized by means of OMA in a cryogenic, 77 K, and high vacuum, 1E-5 mbar, environment. The measured vertical and radial stiffness are 9872.4 N/m and 21329 N/m, respectively, whilst the measured vertical and radial damping values are 0.5278 Nm/s and 0.8938 Nm/s. The first natural frequency in vertical direction has been identified to be 27.39 Hz, whilst a value of 40.26 Hz was identified for the radial direction. The determined damping values for both modes are 0.46% and 0.53%, respectively.

Application of recursive SSA as data pre-processing filter for stochastic subspace identification

  • Loh, Chin-Hsiung;Liu, Yi-Cheng
    • Smart Structures and Systems
    • /
    • v.11 no.1
    • /
    • pp.19-34
    • /
    • 2013
  • The objective of this paper is to develop on-line system parameter estimation and damage detection technique from the response measurements through using the Recursive Covariance-Driven Stochastic Subspace identification (RSSI-COV) approach. To reduce the effect of noise on the results of identification, discussion on the pre-processing of data using recursive singular spectrum analysis (rSSA) is presented to remove the noise contaminant measurements so as to enhance the stability of data analysis. Through the application of rSSA-SSI-COV to the vibration measurement of bridge during scouring experiment, the ability of the proposed algorithm was proved to be robust to the noise perturbations and offers a very good online tracking capability. The accuracy and robustness offered by rSSA-SSI-COV provides a key to obtain the evidence of imminent bridge settlement and a very stable modal frequency tracking which makes it possible for early warning. The peak values of the identified $1^{st}$ mode shape slope ratio has shown to be a good indicator for damage location, meanwhile, the drastic movements of the peak of $2^{nd}$ mode slope ratio could be used as another feature to indicate imminent pier settlement.

Seismic optimization and performance assessment of special steel moment-resisting frames considering nonlinear soil-structure interaction

  • Saeed Gholizadeh;Arman Milany;Oguzhan Hasancebi
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.339-353
    • /
    • 2023
  • The primary objective of the current study is to optimize and evaluate the seismic performance of steel momentresisting frame (MRF) structures considering soil-structure interaction (SSI) effects. The structural optimization is implemented in the context of performance-based design in accordance with FEMA-350 at different confidence levels from 50% to 90% by taking into account fixed- and flexible-base conditions using an efficient metaheuristic algorithm. Nonlinear response-history analysis (NRHA) is conducted to evaluate the seismic response of structures, and the beam-on-nonlinear Winkler foundation (BNWF) model is used to simulate the soil-foundation interaction under the MRFs. The seismic performance of optimally designed fixed- and flexible-base steel MRFs are compared in terms of overall damage index, seismic collapse safety, and interstory drift ratios at different performance levels. Two illustrative examples of 6- and 12-story steel MRFs are presented. The results show that the consideration of SSI in the optimization process of 6- and 12-story steel MRFs results in an increase of 1.0 to 9.0 % and 0.5 to 5.0 % in structural weight and a slight decrease in structural seismic safety at different confidence levels.

Combinatorial particle swarm optimization for solving blocking flowshop scheduling problem

  • Eddaly, Mansour;Jarboui, Bassem;Siarry, Patrick
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.295-311
    • /
    • 2016
  • This paper addresses to the flowshop scheduling problem with blocking constraints. The objective is to minimize the makespan criterion. We propose a hybrid combinatorial particle swarm optimization algorithm (HCPSO) as a resolution technique for solving this problem. At the initialization, different priority rules are exploited. Experimental study and statistical analysis were performed to select the most adapted one for this problem. Then, the swarm behavior is tested for solving a combinatorial optimization problem such as a sequencing problem under constraints. Finally, an iterated local search algorithm based on probabilistic perturbation is sequentially introduced to the particle swarm optimization algorithm for improving the quality of solution. The computational results show that our approach is able to improve several best known solutions of the literature. In fact, 76 solutions among 120 were improved. Moreover, HCPSO outperforms the compared methods in terms of quality of solutions in short time requirements. Also, the performance of the proposed approach is evaluated according to a real-world industrial problem.

Structural parameter estimation combining domain decomposition techniques with immune algorithm

  • Rao, A. Rama Mohan;Lakshmi, K.
    • Smart Structures and Systems
    • /
    • v.8 no.4
    • /
    • pp.343-365
    • /
    • 2011
  • Structural system identification (SSI) is an inverse problem of difficult solution. Currently, difficulties lie in the development of algorithms which can cater to large size problems. In this paper, a parameter estimation technique based on evolutionary strategy is presented to overcome some of the difficulties encountered in using the traditional system identification methods in terms of convergence. In this paper, a non-traditional form of system identification technique employing evolutionary algorithms is proposed. In order to improve the convergence characteristics, it is proposed to employ immune algorithms which are proved to be built with superior diversification mechanism than the conventional evolutionary algorithms and are being used for several practical complex optimisation problems. In order to reduce the number of design variables, domain decomposition methods are used, where the identification process of the entire structure is carried out in multiple stages rather than in single step. The domain decomposition based methods also help in limiting the number of sensors to be employed during dynamic testing of the structure to be identified, as the process of system identification is carried out in multiple stages. A fifteen storey framed structure, truss bridge and 40 m tall microwave tower are considered as a numerical examples to demonstrate the effectiveness of the domain decomposition based structural system identification technique using immune algorithm.

Gaussian Noise Reduction Technique using Improved Kernel Function based on Non-Local Means Filter (비지역적 평균 필터 기반의 개선된 커널 함수를 이용한 가우시안 잡음 제거 기법)

  • Lin, Yueqi;Choi, Hyunho;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.73-76
    • /
    • 2018
  • A Gaussian noise is caused by surrounding environment or channel interference when transmitting image. The noise reduces not only image quality degradation but also high-level image processing performance. The Non-Local Means (NLM) filter finds similarity in the neighboring sets of pixels to remove noise and assigns weights according to similarity. The weighted average is calculated based on the weight. The NLM filter method shows low noise cancellation performance and high complexity in the process of finding the similarity using weight allocation and neighbor set. In order to solve these problems, we propose an algorithm that shows an excellent noise reduction performance by using Summed Square Image (SSI) to reduce the complexity and applying the weighting function based on a cosine Gaussian kernel function. Experimental results demonstrate the effectiveness of the proposed algorithm.

  • PDF

Operational modal analysis for Canton Tower

  • Niu, Yan;Kraemer, Peter;Fritzen, Claus-Peter
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.393-410
    • /
    • 2012
  • The 610 m high Canton Tower (formerly named Guangzhou New Television Tower) is currently considered as a benchmark problem for structural health monitoring (SHM) of high-rise slender structures. In the benchmark study task I, a set of 24-hour ambient vibration measurement data has been available for the output-only system identification study. In this paper, the vector autoregressive models (ARV) method is adopted in the operational modal analysis (OMA) for this TV tower. The identified natural frequencies, damping ratios and mode shapes are presented and compared with the available results from some other research groups which used different methods, e.g., the data-driven stochastic subspace identification (SSI-DATA) method, the enhanced frequency domain decomposition (EFDD) algorithm, and an improved modal identification method based on NExT-ERA technique. Furthermore, the environmental effects on the estimated modal parameters are also discussed.

Active structural control via metaheuristic algorithms considering soil-structure interaction

  • Ulusoy, Serdar;Bekdas, Gebrail;Nigdeli, Sinan Melih
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.175-191
    • /
    • 2020
  • In this study, multi-story structures are actively controlled using metaheuristic algorithms. The soil conditions such as dense, normal and soft soil are considered under near-fault ground motions consisting of two types of impulsive motions called directivity effect (fault normal component) and the flint step (fault parallel component). In the active tendon-controlled structure, Proportional-Integral-Derivative (PID) type controller optimized by the proposed algorithms was used to achieve a control signal and to produce a corresponding control force. As the novelty of the study, the parameters of PID controller were determined by different metaheuristic algorithms to find the best one for seismic structures. These algorithms are flower pollination algorithm (FPA), teaching learning based optimization (TLBO) and Jaya Algorithm (JA). Furthermore, since the influence of time delay on the structural responses is an important issue for active control systems, it should be considered in the optimization process and time domain analyses. The proposed method was applied for a 15-story structural model and the feasible results were found by limiting the maximum control force for the near-fault records defined in FEMA P-695. Finally, it was determined that the active control using metaheuristic algorithms optimally reduced the structural responses and can be applied for the buildings with the soil-structure interaction (SSI).

Curve Tracing Algorithm for Surface/Surface Intersection Curves in 3D Geomtric Modeling (3차원 기하 모델링에서 곡면간의 교차곡선 추적 알고리즘)

  • Park, Chul-Ho;Hong, Sung-Soo;Sim, Je-Hong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.8
    • /
    • pp.2163-2172
    • /
    • 1997
  • SSI(Surface/Surface Intersection)is a fundamental geometric operation which is used in solid and geometric modeling to support trimmed surface and Boolean operations. In this paper, we suggest a new algorithm for tracing along the intersection curve of two regular surfaces. Thus, in this paper, we present a simplicity of computing and second degree continunity. Given a point of intersection curve, it is traced to entire curve of a intersection curve as the initial point of its and the initial point of each of a intersection curve is detected to DFS(Depth First Search) method in the Quadtree and is naturally presented a continuous form.

  • PDF

Target-free vision-based approach for vibration measurement and damage identification of truss bridges

  • Dong Tan;Zhenghao Ding;Jun Li;Hong Hao
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.421-436
    • /
    • 2023
  • This paper presents a vibration displacement measurement and damage identification method for a space truss structure from its vibration videos. Features from Accelerated Segment Test (FAST) algorithm is combined with adaptive threshold strategy to detect the feature points of high quality within the Region of Interest (ROI), around each node of the truss structure. Then these points are tracked by Kanade-Lucas-Tomasi (KLT) algorithm along the video frame sequences to obtain the vibration displacement time histories. For some cases with the image plane not parallel to the truss structural plane, the scale factors cannot be applied directly. Therefore, these videos are processed with homography transformation. After scale factor adaptation, tracking results are expressed in physical units and compared with ground truth data. The main operational frequencies and the corresponding mode shapes are identified by using Subspace Stochastic Identification (SSI) from the obtained vibration displacement responses and compared with ground truth data. Structural damages are quantified by elemental stiffness reductions. A Bayesian inference-based objective function is constructed based on natural frequencies to identify the damage by model updating. The Success-History based Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE) is applied to minimise the objective function by tuning the damage parameter of each element. The locations and severities of damage in each case are then identified. The accuracy and effectiveness are verified by comparison of the identified results with the ground truth data.