• Title/Summary/Keyword: SSD cache

Search Result 45, Processing Time 0.029 seconds

A Comparative Analysis on Page Caching Strategies Affecting Energy Consumption in the NAND Flash Translation Layer (NAND 플래시 변환 계층에서 전력 소모에 영향을 미치는 페이지 캐싱 전략의 비교·분석)

  • Lee, Hyung-Bong;Chung, Tae-Yun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.3
    • /
    • pp.109-116
    • /
    • 2018
  • SSDs that are not allowed in-place update within the allocated page cause another allocation of a new page that will replace the previous page at the moment data modification occurs. This intrinsic characteristic of SSDs requires many changes to the existing HDD-based IO theory. In this paper, we conduct a performance comparison of FTL caching strategy in perspective of cache hashing (Global vs. grouped) and caching algorithm (LRU vs. NUR) through a simulation. Experimental results show that in terms of energy consumption for flash operation the grouped management of cache is not suitable and NUR algorithm is superior to LRU algorithm. In particular, we found that the cache hit ratio of LRU algorithm is about 10% point higher than that of NUR algorithm while the energy consumption of LRU algorithm is about 32% high.

A Cache buffer and Read Request-aware Request Scheduling Method for NAND flash-based Solid-state Disks (캐시 버퍼와 읽기 요청을 고려한 낸드 플래시 기반 솔리드 스테이트 디스크의 요청 스케줄링 기법)

  • Bang, Kwanhu;Park, Sang-Hoon;Lee, Hyuk-Jun;Chung, Eui-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.143-150
    • /
    • 2013
  • Solid-state disks (SSDs) have been widely used by high-performance personal computers or servers due to its good characteristics and performance. The NAND flash-based SSDs, which take large portion of the whole NAND flash market, are the major type of SSDs. They usually integrate a cache buffer which is built from DRAM and uses the write-back policy for better performance. Unfortunately, the policy makes existing scheduling methods less effective at the I/F level of SSDs Therefore, in this paper, we propose a scheduling method for the I/F with consideration of the cache buffer. The proposed method considers the hit/miss status of cache buffer and gives higher priority to the read requests. As a result, the requests whose data is hit on the cache buffer can be handled in advance and the read requests which have larger effects on the whole system performance than write requests experience shorter latency. The experimental results show that the proposed scheduling method improves read latency by 26%.

BLOCS: Block Correlation Aware Sequential Pattern Mining based Caching Algorithm for Hybrid Storages (BLOCS: 블록 상관관계를 인지하는 시퀀스 패턴 마이닝 기반 하이브리드 스토리지 캐슁 알고리즘)

  • Lee, Seongjin;Won, Youjip
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.113-130
    • /
    • 2014
  • In this paper, we propose BLOCS algorithm to find sequence of data that should be saved in cache device of hybrid storage system which uses SSD as a cache device. BLOCS algorithm which uses a sequence pattern mining scheme, creates a set of frequently requested sectors with respect to requested order of sectors. To compare the performance of the proposed scheme, we introduce Distance (DIST) based scheme, Request Frequency (FREQ) based scheme, and Frequency times Size (F-S) based scheme. We measure the hit ratio and I/O latency of different caching schemes using hybrid storage caching simulator. We acquired booting workload along with ten scenarios of launching applications and use the workloads as input to the cache simulator. After experiment with booting workload, we find that BLOCS scheme gives hit ratio of 61% which is about 15% higher than the least performing DIST scheme.

Data De-duplication and Recycling Technique in SSD-based Storage System for Increasing De-duplication Rate and I/O Performance (SSD 기반 스토리지 시스템에서 중복률과 입출력 성능 향상을 위한 데이터 중복제거 및 재활용 기법)

  • Kim, Ju-Kyeong;Lee, Seung-Kyu;Kim, Deok-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.149-155
    • /
    • 2012
  • SSD is a storage device of having high-performance controller and cache buffer and consists of many NAND flash memories. Because NAND flash memory does not support in-place update, valid pages are invalidated when update and erase operations are issued in file system and then invalid pages are completely deleted via garbage collection. However, garbage collection performs many erase operations of long latency and then it reduces I/O performance and increases wear leveling in SSD. In this paper, we propose a new method of de-duplicating valid data and recycling invalid data. The method de-duplicates valid data and then recycles invalid data so that it improves de-duplication ratio. Due to reducing number of writes and garbage collection, the method could increase I/O performance and decrease wear leveling in SSD. Experimental result shows that it can reduce maximum 20% number of garbage collections and 9% I/O latency than those of general case.

In-Time Cache Eviction To Reduce Inefficient SSD Garbage Collection (SSD 가비지 콜렉션 비용을 줄이는 효율적인 적시 캐시 방출 기법)

  • Kim, Kyung-Min;Ha, Rhan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06a
    • /
    • pp.349-351
    • /
    • 2012
  • 낸드 플래시 메모리에서 가비지 콜렉션은 블록의 유효한 데이터들을 새로운 블록으로 옮기고 오래된 블록을 지우는 과정이다. 가비지 콜렉션에 의해 옮겨지는 페이지들은 작업의 양과 형태에 따라 오랫동안 유효한 페이지로 존재하기도 하고 그렇지 않은 경우도 있다. 본 논문에서는 반도체 디스크(Solid State Drive, 이하 SSD)에서 가비지 콜렉션이 비효율적으로 일어나는 경우를 정의하고 비효율적 가비지 콜렉션 과정으로 인한 비용을 줄이는 캐시 방출 기법을 소개한다. 이 기법을 시뮬레이션 해본 결과 작업 형태가 순차적일 때 LRU 캐시 알고리즘과 같이 사용되면 가비지 콜렉션에 의해 옮겨지는 페이지를 12%, 전체 쓰기 연산 횟수를 9%까지 줄일 수 있었고 블록 단위 LRU 알고리즘과 사용했을 때도 보다 좋은 성능을 보였다.

Program Cache Busy Time Control Method for Reducing Peak Current Consumption of NAND Flash Memory in SSD Applications

  • Park, Se-Chun;Kim, You-Sung;Cho, Ho-Youb;Choi, Sung-Dae;Yoon, Mi-Sun;Kim, Tae-Yun;Park, Kun-Woo;Park, Jongsun;Kim, Soo-Won
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.876-879
    • /
    • 2014
  • In current NAND flash design, one of the most challenging issues is reducing peak current consumption (peak ICC), as it leads to peak power drop, which can cause malfunctions in NAND flash memory. This paper presents an efficient approach for reducing the peak ICC of the cache program in NAND flash memory - namely, a program Cache Busy Time (tPCBSY) control method. The proposed tPCBSY control method is based on the interesting observation that the array program current (ICC2) is mainly decided by the bit-line bias condition. In the proposed approach, when peak ICC2 becomes larger than a threshold value, which is determined by a cache loop number, cache data cannot be loaded to the cache buffer (CB). On the other hand, when peak ICC2 is smaller than the threshold level, cache data can be loaded to the CB. As a result, the peak ICC of the cache program is reduced by 32% at the least significant bit page and by 15% at the most significant bit page. In addition, the program throughput reaches 20 MB/s in multiplane cache program operation, without restrictions caused by a drop in peak power due to cache program operations in a solid-state drive.

Demand-based FTL Cache Partitioning for Large Capacity SSDs (대용량 SSD를 위한 요구 기반 FTL 캐시 분리 기법)

  • Bae, Jinwook;Kim, Hanbyeol;Im, Junsu;Lee, Sungjin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.2
    • /
    • pp.71-78
    • /
    • 2019
  • As the capacity of SSDs rapidly increases, the amount of DRAM to keep a mapping table size in SSDs becomes very huge. To address a Demand-based FTL (DFTL) scheme that caches part of mapping entries in DRAM is considered to be a feasible alternative. However, owing to its unpredictable behaviors, DFTL fails to provide consistent I/O response times. In this paper, we a) analyze a root cause that results in fluctuation on read latency and b) propose a new demand-based FTL scheme that ensures guaranteed read response time with low write amplification. By preventing mapping evictions while serving reads, the proposed technique guarantees every host read requests to be done in 2 NAND read operations. Moreover, only with 25% of a cache ratio, the proposed scheme improves random write performance and random mixed performance by 1.65x and 1.15x, respectively, over the traditional DFTL.

Effecient Prefetching Scheme for Hybrid Hard Disk (하이브리드 하드디스크를 위한 효율적인 선반입 기법)

  • Kim, Jeong-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.5
    • /
    • pp.665-671
    • /
    • 2011
  • The Competitiveness of Hybrid hard disk drive(H-HDD) for solid state disk(SSD) comes from both lower power consumption and higher reading speed. This paper suggests a prefetching scheme that can improve the performance of Non-Volatile cache(NVCache) memory installed on the H-HDD through prefetching disk blocks as well as files to the NVCache. The proposed scheme makes the highly used data such as booting files copy to the NVCache as an unit of file and the frequently accessed blocks copy to the NVCache. This prefetching is done on the idle time of disk queue and the priorities of prefetched target blocks are based on both time and spatial locality of blocks. Experiments results show that the suggested method can improve response time of H-HDD and also lower the power consumption.

Performance Evaluation of Linux Page Cache on Solid-State Disk (SSD에 대한 리눅스 페이지 캐시의 성능 평가)

  • Lee, Joo-Hwan;Kim, Jung-Hyun;Kim, Hong-June;Lee, Jae-Jin;Choi, Jae-Young;Lim, Sun-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06b
    • /
    • pp.368-373
    • /
    • 2010
  • 플래시 메모리의 집적도가 높아지고 가격이 저렴해 짐에 따라 낸드 플래시 기반의 SSD의 사용이 확산 되고 있다. 플래시 메모리 기반 SSD는 기존의 하드디스크와 비교하여 여러 가지 장점을 가지지만 덮어 쓰기가 불가능한 특성상 쓰기 공간 확보를 위해 가비지 컬렉션이 수행되어야 하는 단점을 가진다. 이러한 단점을 개선하기 위해 다양한 연구들이 제안되었다. 이 중, 운영체제의 페이지 캐시에 대한 연구가 상반된 주장을 보이고 있는 점[11, 12, 13]에 착안하여 실험을 통해 이를 재확인하였다. 실험 결과, 큰 용량의 페이지 캐시가 SSD를 스토리지로 갖는 시스템에서 파일 입출력 성능을 크게 향상시키는 것을 확인 할 수 있었다.

  • PDF

Efficient DRAM Buffer Access Scheduling Techniques for SSD Storage System (SSD 스토리지 시스템을 위한 효율적인 DRAM 버퍼 액세스 스케줄링 기법)

  • Park, Jun-Su;Hwang, Yong-Joong;Han, Tae-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.7
    • /
    • pp.48-56
    • /
    • 2011
  • Recently, new storage device SSD(Solid State Disk) based on NAND flash memory is gradually replacing HDD(Hard Disk Drive) in mobile device and thus a variety of research efforts are going on to find the cost-effective ways of performance improvement. By increasing the NAND flash channels in order to enhance the bandwidth through parallel processing, DRAM buffer which acts as a buffer cache between host(PC) and NAND flash has become the bottleneck point. To resolve this problem, this paper proposes an efficient low-cost scheme to increase SSD performance by improving DRAM buffer bandwidth through scheduling techniques which utilize DRAM multi-banks. When both host and NAND flash multi-channels request access to DRAM buffer concurrently, the proposed technique checks their destination and then schedules appropriately considering properties of DRAMs. It can reduce overheads of bank active time and row latency significantly and thus optimizes DRAM buffer bandwidth utilization. The result reveals that the proposed technique improves the SSD performance by 47.4% in read and 47.7% in write operation respectively compared to conventional methods with negligible changes and increases in the hardware.