• Title/Summary/Keyword: SSD cache

Search Result 45, Processing Time 0.034 seconds

A Novel Method of Improving Cache Hit-rate in Hadoop MapReduce using SSD Cache

  • Kim, Jong-Chan;An, Jae-Hoon;Kim, Young-Hwan;Jeon, Ki-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.8
    • /
    • pp.1-6
    • /
    • 2015
  • The MapReduce Program of Hadoop Distributed File System operates on any unspecified nodes due to distributed-parallel process and block replicate for data stability. Since it is difficult to guarantee the cache locality when a Solid State Drive is used as a cache in hadoop, cache hit-rate is decreased. In this paper, we suggest a method to improve cache hit rate by pre-loading the input data of the MapReduce onto the SSD cache. To perform this method, we estimated the blocks that are used on each node by using capacity scheduler and block metadata. Eventually we could increase the performance of SSD cache by loading the blocks onto SSD cache before the Map Task run.

SSD Cache for RAID: Integrating Data Caching and Parity Update Delay (RAID를 위한 SSD 캐시: 데이터 캐싱과 패리티 갱신 지연 기법의 결합)

  • Minh, Sophal;Lee, Donghee
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.6
    • /
    • pp.379-385
    • /
    • 2017
  • In enterprise environments, hybrid storage typically utilizes SSDs over disk-based RAID. Typically, SSDs over RAID are used as the data cache. Recently, the LeavO caching scheme was introduced to reduce the parity update overhead of the underlying RAID. In this paper, we combine the data caching and LeavO caching schemes and derive cost models of the combined cache to determine the optimal data and LeavO cache sizes. We also propose the Adaptive Combined Cache that dynamically adjusts the data cache and LeavO cache sizes for evolving workloads. Experimental results show that the performance of the Adaptive Combined Cache is significantly superior to that of the conventional data caching scheme and is comparable with that of the off-line optimal scheme.

A Neighbor Prefetching Scheme for a Hybrid Storage System (SSD 캐시를 위한 이웃 프리페칭 기법)

  • Baek, Sung Hoon
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.5
    • /
    • pp.40-52
    • /
    • 2018
  • Solid state drive (SSD) cache technologies that are used as a second-tier cache between the main memory and hard disk drive (HDD) have been widely studied. The SSD cache requires a new prefetching scheme as well as cache replacement algorithms. This paper presents a prefetching scheme for a storage-class cache using SSD. This prefetching scheme is designed for the storage-class cache and based on a long-term scheduling in contrast to the short-term prefetching in the main memory. Traditional prefetching algorithms just consider only read, but the presented prefetching scheme considers both read and write. An experimental evaluation shows 2.3% to 17.8% of hit rate with a 64GB of SSD and the 4GiB of prefetching size using an I/O trace of 14 days. The proposed prefetching scheme showed significant improvement of cache hit rate and can be easily implemented in storage-class cache systems.

An performance analysis on SSD caching mechanism in Linux (리눅스 SSD caching mechanism 의 성능 비교 및 분석)

  • Heo, Sang-Bok;Park, Jinhee;Jo, Heeseung
    • Smart Media Journal
    • /
    • v.4 no.2
    • /
    • pp.62-67
    • /
    • 2015
  • During several decades, hard disk drive(HDD) has been used in most computer systems as secondary storage and, however, the performance enhancement of HDD is limited by its mechanical properties. On the other hand, although the flash memory based solid state drive (SSD) has more advantages over HDD such as high performance and low noise, SSD is still too expensive for common usage and expected to take several years to replace HDD completely. Therefore, SSD caching mechanism using the SSD as a cache of high capacity HDD has been highlighted lately. The representatives of SSD caching mechanisms are typically bcache, dm-cache, Flashcache, and EnhanceIO. Each of them has its own internal mechanism and implementation, and this makes them to show their own pros. and cons. In this paper, we analyze the characteristics of each SSD caching mechanisms and compare the performance of them under various workloads. We expect that our contribution will be useful to enhance the performance of SSD caching mechanisms.

Performance Analysis of Flash Memory SSD with Non-volatile Cache for Log Storage (비휘발성 캐시를 사용하는 플래시 메모리 SSD의 데이터베이스 로깅 성능 분석)

  • Hong, Dae-Yong;Oh, Gi-Hwan;Kang, Woon-Hak;Lee, Sang-Won
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.107-113
    • /
    • 2015
  • In a database system, updates on pages that are made by a transaction should be stored in a secondary storage before the commit is complete. Generic secondary storages have volatile DRAM caches to hide long latency for non-volatile media. However, as logs that are only written to the volatile DRAM cache don't ensure durability, logging latency cannot be hidden. Recently, a flash SSD with capacitor-backed DRAM cache was developed to overcome the shortcoming. Storage devices, like those with a non-volatile cache, will increase transaction throughput because transactions can commit as soon as the logs reach the cache. In this paper, we analyzed performance in terms of transaction throughput when the SSD with capacitor-backed DRAM cache was used as log storage. The transaction throughput can be improved over three times, by committing right after storing the logs to the DRAM cache, rather than to a secondary storage device. Also, we showed that it could acquire over 73% of the ideal logging performance with proper tuning.

An In-Depth Analysis and Improvement on Cache Mechanisms of SSD FTL (SSD FTL의 캐시 메커니즘에 대한 심층 분석 및 개선)

  • Lee, Hyung-Bong;Chung, Tae-Yun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.1
    • /
    • pp.9-16
    • /
    • 2020
  • Recently, the capacity of SSD has been increasing rapidly due to the improvement of flash memory density. To take full advantage of these SSDs, first of all, FTL's prompt adaptation is necessary. The FTL is a translation layer existing in SSDs to overcome the drawback of the SSD that cannot be modified in place, and has garbage collection and caching functions in addition to the map table management function. In this study, we focus on caching function, compare and analyze the cache implementation methodologies, and propose improved methods. Typical cache implementations divide the cache into groups, manage and retrieve the caches in the group as a linked list. Thus, searches are made in the order of the linked list. In contrast, we propose a method of sequential searching using the search area group of a cache registered in the map table regardless of the linked list and cache group. Experimental results show that the proposed method has a 2.5 times improvement over the conventional method.

Performance Enhancement of Distributed File System as Virtual Desktop Storage Using Client Side SSD Cache (가상 데스크톱 환경에서의 클라이언트 SSD 캐시를 이용한 분산 파일시스템의 성능 향상)

  • Kim, Cheiyol;Kim, Youngchul;Kim, Youngchang;Lee, Sangmin;Kim, Youngkyun;Seo, Daewha
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.12
    • /
    • pp.433-442
    • /
    • 2014
  • In this paper, we introduce the client side cache of distributed file system for enhancing read performance by eliminating the network latency and decreasing the back-end storage burden. This performance enhancement can expand the fields of distributed file system to not only cloud storage service but also high performance storage service. This paper shows that the distributed file system with client side SSD cache can satisfy the requirements of VDI(Virtual Desktop Infrastructure) storage. The experimental results show that full-clone is more than 2 times faster and boot time is more than 3 times faster than NFS.

Analysis and Advice on Cache Algorithms of SSD FTL (SSD FTL 캐시 알고리즘 분석 및 제언)

  • Hyung Bong, Lee;Tae Yun, Chung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • It is impossible to overwrite on an already allocated page in SSDs, so whenever a write operation occurs a page replacement with a clean page is required. To resolve this problem, SSDs have an internal flash translation layer called FTL that maps logical pages managed by a file system of operating system to currently allocated physical pages. SSD pages discarded due to write operations must be recycled through initialization, but since the number of initialization times is limited the FTL provides a caching function to reduce the number of writes in addition to the page mapping function, which is a core function. In this study, we focus on the FTL cache methodologies reducing the number of page writes and analyze the related algorithms, and propose a write-only cache strategy. As a result of experimenting with the write-only cache using a simulator, it showed an improvement of up to 29%.

Divided Disk Cache and SSD FTL for Improving Performance in Storage

  • Park, Jung Kyu;Lee, Jun-yong;Noh, Sam H.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • Although there are many efficient techniques to minimize the speed gap between processor and the memory, it remains a bottleneck for various commercial implementations. Since secondary memory technologies are much slower than main memory, it is challenging to match memory speed to the processor. Usually, hard disk drives include semiconductor caches to improve their performance. A hit in the disk cache eliminates the mechanical seek time and rotational latency. To further improve performance a divided disk cache, subdivided between metadata and data, has been proposed previously. We propose a new algorithm to apply the SSD that is flash memory-based solid state drive by applying FTL. First, this paper evaluates the performance of such a disk cache via simulations using DiskSim. Then, we perform an experiment to evaluate the performance of the proposed algorithm.

Performance Evaluation of SSD Cache Based on DM-Cache (DM-Cache를 이용해 구현한 SSD 캐시의 성능 평가)

  • Lee, Jaemyoun;Kang, Kyungtae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.11
    • /
    • pp.409-418
    • /
    • 2014
  • The amount of data located in storage servers has dramatically increased with the growth in cloud and social networking services. Storage systems with very large capacities may suffer from poor reliability and long latency, problems which can be addressed by the use of a hybrid disk, in which mechanical and flash memory storage are combined. The Linux-based SSD(solid-state disk) uses a caching technique based on the DM-cache utility. We assess the limitations of DM-cache by evaluating its performance in diverse environments, and identify problems with the caching policy that it operates in response to various commands. This policy is effective in reducing latency when Linux is running in native mode; but when Linux is installed as a guest operating systems on a virtual machine, the overhead incurred by caching actually reduces performance.