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Abstract—Although there are many efficient 
techniques to minimize the speed gap between 
processor and the memory, it remains a bottleneck for 
various commercial implementations. Since 
secondary memory technologies are much slower than 
main memory, it is challenging to match memory 
speed to the processor. Usually, hard disk drives 
include semiconductor caches to improve their 
performance. A hit in the disk cache eliminates the 
mechanical seek time and rotational latency. To 
further improve performance a divided disk cache, 
subdivided between metadata and data, has been 
proposed previously. We propose a new algorithm to 
apply the SSD that is flash memory-based solid state 
drive by applying FTL. First, this paper evaluates the 
performance of such a disk cache via simulations 
using DiskSim. Then, we perform an experiment to 
evaluate the performance of the proposed algorithm.    
 
Index Terms—Cache, hard disk, SSD, simulation, 
DiskSim    

I. INTRODUCTION 

As computer processor speeds continue to increase, 
the challenge to ensure timely data supply also continues 
to increase. Processor speed increases at approximately 
60% every year, whereas memory speed is growing at 
approximately 10% [9]. One major bottleneck in meeting 
the increased processor demand is the speed data and 

instructions are supplied from the storage devices. 
Although high speed cache systems and various other 
techniques have improved to fill the performance gap, 
secondary storage access speed remains a concern, 
especially for big data. 

Access times for secondary devices are significantly 
higher than main memory, as shown in Table 1. Hard 
disk access is 105 slower than the main memory. As the 
gap increases toward 6 orders of magnitude, further 
optimization techniques are required. Even a small disk 
cache improvement could significantly reduce response 
time [11], substantially improving overall response time. 
Hospodor provides the total access time when the 
required data is not present in the disk cache and the 
physical disk must be accessed [6].  

For simplicity, we consider cache transfer time to be 
equal that for a magnetic disk, although the latter is much 
higher as it involves rotating the physical disk to read 
from the sectors [7]. Access time is reduced by a factor 
of 100 when there is a cache hit. Many mechanical 
techniques have improved actual response over the last 
decade via reducing seek time by approximately 8% and 
increasing rotational speed by approximately 9% 
annually. Data area density improvements by 40% 
annually have also assisted, reducing response time by 
8% every year. Overall, there has been a 15% yearly 
improvement in seek times from improved disk 
technology [1, 4].  

The disk cache is a buffer in the disk system that holds 
recently accessed portions of disk memory. The file 
system/database cache represents the logical cache and 
the disk cache represents the physical cache. When the 
processor makes a request to the disk drive, the OS first 
checks the logical cache. A miss at the logical level 
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cache results in an I/O request to the physical cache. If a 
miss occurs at the physical level cache, then the physical 
drive is accessed.  

This paper focuses on the physical cache [1], i.e., the 
disk cache of the disk drive system. Every disk cache hit 
results in substantially reduced (1–4 ms) I/O than would 
be required to access the disk itself (10–100 ms) [16]. 
We evaluate the performance of a disk cache divided into 
data and metadata regions, where metadata represents 
only a small portion of the memory, but is accessed very 
frequently [2, 5, 6].  

Section 2 presents related works. Section 3 explains 
split percentage design and Section 4 discusses the 
implementation and evaluation methodology. Section 5 
presents the simulation results. Section 6 concludes the 
paper and discusses future work.  

II. RELATED WORK 

We assess related research in the area of disk cache 
systems, and since metadata is a key aspect of the 
proposed system, we also discuss some optimizations in 
the field of metadata access.  

 
1. Optimization Techniques for Hard Disk Cache  

 
Yang and Hu proposed a novel disk storage technique 

called disk caching disk (DCD) to improve disk cache 
I/O performance [18]. They used a small log disk, or 
cache-disk, as a secondary disk cache to optimize write 
performance. This exploited access speed differences 
between the normal and cache disks. The latter has faster 
access even though both have the same physical 
characteristics because of the different data units used 
and differences in the way the data was accessed. Data 
transfer rate in units of tracks is almost eight times faster 
than in unit of blocks. Therefore, the log buffer was used 
as an extension to the RAM buffer to cache file changes 
and destage this to the data disk when the system was 
idle. All the small and random writes were first buffered 
into the RAM cache, and then written in a single data 
transfer to the cache disk when it was idle. Hence, the 
RAM buffer was cleared for more data transfer. When 
the disk was idle, the destage operation between the 
cache to disk and data disk was performed. Experiment 
tests with three traces (hplajw, cello, and snake), showed 

the DCD technique could improve write performance at 
the secondary storage level by one to two orders of 
magnitude. This technique involves the use of an 
additional hardware element to obtain the performance 
improvement.  

 
2. Optimization Techniques for Metadata Access 

 
Pen Gu et al. argued that existing data prefetching 

algorithms did not consider group prefetching and have 
higher computational complexity [5]. These techniques 
do not work with metadata access. Hence, they proposed 
an accurate and distributed metadata oriented prefetching 
algorithm. They proposed a weighted graph based 
technique for prefetching. Experiments showed the 
proposed algorithm provided considerable improvements 
for metadata access on the client side, reducing response 
time by 67% on average compared to LRU and other 
prefetching algorithms.  

Hong evaluated the performance impact from using 
micro electromechanical systems (MEMS) as metadata 
storage and disk cache [6]. MEMS have seek-times 10–
20 times faster than hard drives, storage density 10 times 
higher, and also lower power consumption. Simulations 
for MEMS used as dedicated metadata storage show a 
potential improvement of 28–46% in system 
performance for user workload, depending on how much 
metadata traffic is incorporated in the workload. He also 
discussed how using MEMS as a disk write buffer could 
improve system performance by a factor of 3.3–8.2, and 
provide better consistency on system performance than a 
disk system by a factor of 2.4 to 5.7.  

Scott et al. discussed the importance of efficient 
metadata management in large distributed storage 
systems [2]. They argued that subtree partitioning and 
pure hashing were common techniques for managing 
metadata in such systems, but have a bottleneck of high 
concurrent access rates. They proposed a Lazy Hybrid 
(LH) technique for metadata management that combined 
the advantages of the two approaches, while avoiding the 
disadvantages. 

One common conclusion from these researchers was 
that metadata is relatively small, but accessed very 
frequently. This forms the basis for our design. 
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3. Divided Disk Cache into Data and Metadata 
 
Baskiyar et al. discussed split cache, or divided disk 

cache (DDC), architecture, where the data region of the 
cache is split into data and metadata [1]. In this 
theoretical paper, DDC was analyzed with the aim to 
improve the read miss ratio. They claimed the technique 
would reduce interference between data and metadata, 
and the effective read miss ratio could be improved by 
20%, which would improve response time by 16%. The 
major points of their paper were: 

Metadata accounts for only a small portion of the data 
but is accessed very frequently. 

They used the Linux EXT2 file system to calculate 
metadata size, and provided data and metadata 
relationships. 

Metadata account for 4.66% of an 8 kB file and 
3.156% of a 12 kB file. 

 
4. SSD 

 
Flash memory-based solid state drive (SSD) has 

excellent I/O performance with low power consumption. 
Due to the limitation of NAND flash, the Flash 
Translation Layer (FTL) is implemented in the SSD 
controller to emulate block device such as hard drive. 
The FTL performs a garbage collection (GC) process to 
reclaim free space [19]. Servers use SSD as a storage 
device to store persistent data in big data environment. 
However, many devices in big data and Internet of 
Things (IoT) environment send a data frequently to 
server and makes a lot of small writes on the SSD. As a 
result, GC process performs internal data movement 
between the NAND flash block so that I/O performance 
is decreased [18]. 

For this reason, in this paper, we propose new FTL 
scheme that is based on page mapping FTL. Our 
experimental results show that our proposed method has 
11% better results than the conventional page mapping 
FTL. 

III. OPTIMUM DIVIDED CACHE DESIGN 

We consider various research techniques in the area of 
disk cache. Also, since metadata and its access patterns 
are important for our research, we discuss optimization 

of metadata access.  
The divided cache design used here is similar to [1]. 

From Hsu and Smith [9, 10], the cache system becomes 
effective when the cache size reaches 1% of the external 
storage space. For example, for a 1 TB hard disk, the 
disk cache should be 5 GB when the disk is half full.  

However, it is generally impractical to provide a cache 
of this magnitude. Therefore, we split the cache into data 
and metadata regions, so that metadata cache amounts to 
at least 1% of the metadata in the disk drive. Consider 
the case where we have a cache of 4 kB, as shown in Fig. 
1(a). The disk is accessed twice to retrieve a 4 kB file 
and 2 kB metadata file. Metadata is first retrieved from 
the disk and stored in the cache Fig. 1(b), and then the 
data is retrieved from the disk and brought into the data 
cache. Since the data is 4 kB, it replaces the metadata in 
the cache Fig. 1(c). 

When the same file is requested again, the metadata 
for the file is not present in the cache, and hence there is 
a cache miss. Metadata is now retrieved from the disk 
and stored in the metadata cache, replacing 2 kB data Fig. 
1(d). The cache now contains 2 kB data and 2 kB 
metadata, resulting in a hit for half the data.  

However, If the cache is divided into data and 
metadata regions as shown in Fig. 2(a), each of size 2 kB, 
then the metadata does not get a miss in the second 
request. This reduces interference between data and 
metadata and increases the overall hit ratio.  

Some space is removed from the data cache region, so 
the number of data hits may reduce. However, since 

 

Fig. 1. Miss rates and composite derivatives for two processes 
with conventional cache. 

 

 

Fig. 2. Miss rates and composite derivatives for two processes 
with divided cache. 
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metadata is accessed more frequently, the number of 
metadata hits increases significantly, compensating for 
the reduced data hits [2, 5, 6]. On the other hand, 
metadata is relatively small, and metadata cache space 
must be allocated carefully. Allocating more space than 
required for metadata would reduce performance 
significantly, as this increased metadata cache space is at 
the expense of data cache space.  

Fig. 3 explains the motivation behind varying the split 
percentage. Fig. 3(a) shows the cache divided in the 
middle, i.e., 50% for data and 50% for metadata cache 
regions. But metadata is smaller than data, and so there is 
lot of unassigned space within the metadata cache region. 
Since this space is taken from the data cache region, 
there is less space for data in the cache, which increases 
data misses, and degrades the system. Fig. 3(b) is a more 
reasonable split ratio, where metadata cache occupies 
only a small portion of the available cache space. It is 
important to identify the optimum split point where 
metadata hits exceed the loss in data hits to provide 
optimal performance gain. This paper addresses this 
issue by evaluating outcomes for a range of relative 
metadata and data cache region sizes. 

As discussed in [1], requests to appropriate regions 
(data requests to the data cache region and metadata 
requests to the metadata cache region), are modified at 
the OS level, which sends one additional bit of 
information. This bit can be read by the disk controller 
and the request directed appropriately.  

There are a number of tasks required to achieve the 
proposed design, as shown in Fig. 4: 

Identify the I/O request as read or a write. 
Once the I/O type is identified, differentiate between a 

data and metadata read.  
Once the request type is completely identified, the 

request is satisfied by searching for the block numbers in 

their respective regions, i.e., if it is a data read request, 
then search in the data cache region; whereas if it is a 
metadata read request, search in the metadata cache 
region. 

IV. SECTION BASED PAGE MAPPING FTL 

Our goal is to reduce a GC process to improve the I/O 
performance of SSD while writing operation is 
performed. The write operation in IoT environment has 
small size of data that consists of metadata and data that 
can be scattered across multiple blocks in an SSD. If 
invalidated pages are scattered across multiple blocks 
when performing the garbage collection in order to get a 
new block in the SSD, additional page copies and block 
erases cause a high GC overhead. 

To decrease the problem, we propose a section based 
page mapping based FTL that divides the SSD into two 
sections to store metadata and user data on different 
sections. Fig. 5 shows an architecture of proposed FTL 
scheme. This method separates metadata and user data so 
that data are separately stored in each section based on 
block number of data so that GC task can be reduced. 

 

Fig. 3. Data and metadata regions in cache. 
 

 

Fig. 4. Metadata detection method. 
 
 

 

Fig. 5. Architecture of Section based page mapping FTL. 
 



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.17, NO.1, FEBRUARY, 2017 19 

 

V. EVALUATION 

The DDC and Section-based page mapping FTL 
discussed above are implemented in the well-known 
DiskSim 4.0 simulator [3]. DiskSim is written in C, and 
is widely accepted for storage system simulation. Several 
experiments were performed, along with benchmark 
traces. 

 
1. DiskSim Simulator 

 
DiskSim 4.0 is a well-known simulator developed to 

support research in storage subsystems. Disksim includes 
modules to simulate disks, intermediate controllers, 
buses, device drivers, request schedulers, disk block 
caches and disk array data organization. DiskSim has 
been successfully validated against various commercial 
disk drives with exceptional results [3].  

 
2. Evaluation Traces and Workloads 

 
Experiments were conducted with the hplajw and cello 

1999 benchmarks from HP-UX. These traces have I/O 
events that include data and metadata access [5]. In 
hplajw, write requests (67%) dominate for hplajw, 
whereas read requests (63%) dominate for cello 
benchmark [18]. Overall, metadata read requests account 
for 40% and 10% of all read requests in cello and hplajw, 
respectively [12]. We used two full day traces of cello 
and a single day trace from hplajw, and evaluated the 
system performance with DDC compared to unified 
cache.  

Various other synthetic traces were generated to 
evaluate DDC behavior. There are two important 
metadata factors consider in determining the split 
effectiveness: the percentage of metadata requests, and 
the access pattern. Therefore, we generated synthetic 
traces of valid trace format and assigned a few read and 
write events as metadata events. Since metadata is 
smaller, we assigned only read events that retrieved small 
numbers of blocks as metadata reads. From the average 
metadata size, block size in the cache, and relative data 
and metadata block sizes, we randomly marked records 
where access size was less than or equal to 2 blocks as 
metadata. For a given cache size, the experiment was 
conducted with three different access patterns and the 

average value calculated, as shown in Fig. 6. For 
example, if there were 10000 records in the trace file, we 
randomly selected 4000 records as metadata reads to 
provide 40% metadata reads. We created trace files with 
metadata content at 20%, 40%, and 60%. 

Experiments were conducted with nine cache sizes 
(10–16 MB), different read percentages (30–90%), 
different metadata percentages (20–60%, as discussed 
above), and different metadata-data split percentages 
ranging from 10:90 to 90:10. All experiments were 
conducted three times, and the average calculated. Thus, 
there were 9 × 7 × 3 × 5 × 3 = 2835 data points covering 
all the combinations. 

For a particular trace file, all the block numbers with ≤ 
2 blocks requested were collected initially. For a 
particular random number, the request at that line in the 
trace file was checked to see if the block number had 
been collected previously, and if so it was considered to 
be a metadata access. This process was conducted three 
times with the same trace files but different random seeds. 
Finally, the average hit ratio was calculated. Thus, we 
accounted for metadata percentages in the trace file and 
also different access patterns. This experiment was 
intended to mimic metadata access patterns similar to the 
various test benchmarks. The entire trace file was 
spanned to obtain the particular percentage of metadata 
access. 

VI. RESULTS 

DDC evaluation was performed as discussed above, 
and in general, as the metadata region increased, the hit 
ratio reduced, as expected (discussed above). The read 

 

Fig. 6. Hit ratio with varying cache size for hplajw. 
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ratio also plays a critical role in optimizing the hit ratio. 
DDC provides improvement only when the percentage of 
reads in the trace file was above 70%. For all other cases, 
there was very little or no optimization. Hence DDC 
improves hit ratio for read intensive applications, and 
when the data cache region is above 50%.  

 
1. Standard Benchmarks 

 
Fig. 6 and 7 show Cello-1990 traces (predominantly 

read access), which were taken over two days. Compared 
to conventional cache, the hit ratio improvement rises to 
6% with increasing metadata cache size. Note that the 
maximum improvement (6%) occurs at approximately 
16000 kB (0.015 GB), or 0.17% of the disk size (9.1 GB). 
If the disk were considered half full, this is 
approximately 1/3% (0.33%) of the used disk space. 
Thus, DDC performance with moderate size caches is 
more beneficial and cost-effective than a 1% unified 
cache. 

 
2. Synthetic Trace Files and Random Access Methods  

 
Fig. 7 shows that DDC will produce almost same hit 

ratio as conventional cache when the data to metadata 
region ratio is 80:20. But when the metadata region is 
reduced, there is an improvement in overall hit ratio over 
conventional cache. Fig. 8 shows the DDC is effective 
when the number of metadata requests in the input trace 
is high. As the number of metadata accesses increase, the 
hit ratio for metadata also increases. Fig. 9, shows 
significant benefit in hit ratio for DDC when the input 
trace read requests exceed 60%. Furthermore, DDC does 

not hinder performance for write intensive applications, 
with read percentages over 30%. 

 
3. Evaluation of Section based Page Mapping FTL 

 
We utilize the DiskSim simulation environment that is 

integrated with the FTL simulator for experiments. A few 
modifications were done in DiskSim source code to 
implement the section based FTL design. Major code 
changes were done in flash.c, pagemap.c and 
ssd_interface.c [17]. To evaluate the section based page 
mapping FTL, we used 2 traces that are the MSR 
Cambridge traces from SNIA and real block trace taken 
from IoT server HDD. First trace has 80% read and 15% 
write and last trace has 15% read and 85% write. Fig. 10 
shows that block erase is 1.4% less than the page 
mapping FTL method. And Fig. 11 shows that the 
section based FTL reduced GC counts approximately 
11% compared to conventional page mapping FTL. 

 

Fig. 7. Hit ratio with varying metadata cache regions for 
hplajw. 
 

 

Fig. 8. Average hit ratio with varying metadata percentage in 
input for Synthetic trace with Validate trace format and random 
access. 

 

 

Fig. 9. Average Hit Ratio with varying read percentage in input 
for Synthetic trace with Validate trace format and random 
access. 
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VII. CONCLUSIONS 

Significant improvements can be achieved for DDC 
when the percentage of reads in an application exceeds 
60%, with metadata reads being at least 40% of the 
overall reads. For this condition, there is an optimum 
point where the number of total hits in DDC is more than 
for unified cache. This reduces traffic to the physical disk 
and hence provides greater response time and higher 
processing speeds when the external storage is involved 
in I/O operations. Thus, the processor can be kept busier 
and the bottleneck between processor and secondary 
storage system is significantly reduced. 

We conclude that dividing the disk cache into data and 
metadata regions can yield positive results when the split 
ratio is between 70:30 to 90:10, with the latter being 
preferred, as this would not significantly reduce the hit 
ratio for data reads, but provides higher overall hit ratio. 

Finally, we proposed the section based page mapping 
FTL scheme that is an appropriate solution for big data 
and IoT environment that have small data writing. This 
project is a work in progress. We plan to consider further 
dividing the SSD into several section. We also plan to 
conduct experiments using large scale and real workloads. 
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