• Title/Summary/Keyword: SRSF1

Search Result 3, Processing Time 0.018 seconds

Investigation of the effect of SRSF9 overexpression on HIV-1 production

  • Ga-Na, Kim;Kyung-Lee, Yu;Hae-In, Kim;Ji Chang, You
    • BMB Reports
    • /
    • v.55 no.12
    • /
    • pp.639-644
    • /
    • 2022
  • Serine-arginine-rich splicing factors (SRSFs) are members of RNA processing proteins in the serine-arginine-rich (SR) family that could regulate the alternative splicing of the human immunodeficiency virus-1 (HIV-1). Whether SRSF9 has any effect on HIV-1 regulation requires elucidation. Here, we report for the first time the effects and mechanisms of SRSF9 on HIV-1 regulation. The overexpression of SRSF9 inhibits viral production and infectivity in both HEK293T and MT-4 cells. Deletion analysis of SRSF9 determined that the RNA regulation motif domain of SRSF9 is important for anti-HIV-1 effects. Furthermore, overexpression of SRSF9 increases multiple spliced forms of viral mRNA, such as Vpr mRNA. These data suggest that SRSF9 overexpression inhibits HIV-1 production by inducing the imbalanced HIV-1 mRNA splicing that could be exploited further for a novel HIV-1 therapeutic molecule.

SR proteins regulate V6 exon splicing of CD44 pre-mRNA

  • Loh, Tiing Jen;Moon, Heegyum;Jang, Ha Na;Liu, Yongchao;Choi, Namjeong;Shen, Shengfu;Williams, Darren Reece;Jung, Da-Woon;Zheng, Xuexiu;Shen, Haihong
    • BMB Reports
    • /
    • v.49 no.11
    • /
    • pp.612-616
    • /
    • 2016
  • CD44 pre-mRNA includes 20 exons, of which exons 1-5 ($C_1-C_5$) and exons 16-20 ($C_6-C_{10}$) are constant exons, whereas exons 6-15 ($V_1-V_{10}$) are variant exons. $V_6$-exon-containing isoforms have been known to be implicated in tumor cell invasion and metastasis. In the present study, we performed a SR protein screen for CD44 $V_6$ splicing using overexpression and lentivirus-mediated shRNA treatment. Using a CD44 $V_6$ minigene, we demonstrate that increased SRSF3 and SRSF4 expression do not affect $V_6$ splicing, but increased expression of SRSF1, SRSF6 and SRSF9 significantly inhibit $V_6$ splicing. In addition, using a constitutive exon-specific primer set, we could not detect alterations of CD44 splicing after SR protein-targeting shRNA treatment. However, using a $V_6$ specific primer, we identified that reduced SRSF2 expression significantly reduced the $V_6$ isoform, but increased $V_{6-10}$ and $V_{6,8-10}$ isoforms. Our results indicate that SR proteins are important regulatory proteins for CD44 $V_6$ splicing.

Identification of Novel Functional Variants of SIN3A and SRSF1 among Somatic Variants in Acute Myeloid Leukemia Patients

  • Min, Jae-Woong;Koh, Youngil;Kim, Dae-Yoon;Kim, Hyung-Lae;Han, Jeong A;Jung, Yu-Jin;Yoon, Sung-Soo;Choi, Sun Shim
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.465-475
    • /
    • 2018
  • The advent of massively parallel sequencing, also called next-generation sequencing (NGS), has dramatically influenced cancer genomics by accelerating the identification of novel molecular alterations. Using a whole genome sequencing (WGS) approach, we identified somatic coding and noncoding variants that may contribute to leukemogenesis in 11 adult Korean acute myeloid leukemia (AML) patients, with serial tumor samples (primary and relapse) available for 5 of them; somatic variants were identified in 187 AML-related genes, including both novel (SIN3A, C10orf53, PTPRR, and RERGL) and well-known (NPM1, RUNX1, and CEPBA) AML-related genes. Notably, SIN3A expression shows prognostic value in AML. A newly designed method, referred to as "hot-zone" analysis, detected two putative functional noncoding variants that can alter transcription factor binding affinity near PPP1R10 and SRSF1. Moreover, the functional importance of the SRSF1 noncoding variant was further investigated by luciferase assays, which showed that the variant is critical for the regulation of gene expression leading to leukemogenesis. We expect that further functional investigation of these coding and noncoding variants will contribute to a more in-depth understanding of the underlying molecular mechanisms of AML and the development of targeted anti-cancer drugs.