Browse > Article
http://dx.doi.org/10.5483/BMBRep.2022.55.12.166

Investigation of the effect of SRSF9 overexpression on HIV-1 production  

Ga-Na, Kim (Department of Pathology, National Research Laboratory for Molecular Virology, College of Medicine, The Catholic University of Korea)
Kyung-Lee, Yu (Department of Pathology, National Research Laboratory for Molecular Virology, College of Medicine, The Catholic University of Korea)
Hae-In, Kim (Department of Pathology, National Research Laboratory for Molecular Virology, College of Medicine, The Catholic University of Korea)
Ji Chang, You (Department of Pathology, National Research Laboratory for Molecular Virology, College of Medicine, The Catholic University of Korea)
Publication Information
BMB Reports / v.55, no.12, 2022 , pp. 639-644 More about this Journal
Abstract
Serine-arginine-rich splicing factors (SRSFs) are members of RNA processing proteins in the serine-arginine-rich (SR) family that could regulate the alternative splicing of the human immunodeficiency virus-1 (HIV-1). Whether SRSF9 has any effect on HIV-1 regulation requires elucidation. Here, we report for the first time the effects and mechanisms of SRSF9 on HIV-1 regulation. The overexpression of SRSF9 inhibits viral production and infectivity in both HEK293T and MT-4 cells. Deletion analysis of SRSF9 determined that the RNA regulation motif domain of SRSF9 is important for anti-HIV-1 effects. Furthermore, overexpression of SRSF9 increases multiple spliced forms of viral mRNA, such as Vpr mRNA. These data suggest that SRSF9 overexpression inhibits HIV-1 production by inducing the imbalanced HIV-1 mRNA splicing that could be exploited further for a novel HIV-1 therapeutic molecule.
Keywords
Human immunodeficiency virus-1 (HIV-1); Splicing regulation; SR protein; SRSF1; SRSF9;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Purcell DF and Martin MA (1993) Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol 67, 6365-6378   DOI
2 Ocwieja KE, Sherrill-Mix S, Mukherjee R et al (2012) Dynamic regulation of HIV-1 mRNA populations analyzed by single-molecule enrichment and long-read sequencing. Nucleic Acids Res 40, 10345-10355   DOI
3 Tazi J, Bakkour N, Marchand V, Ayadi L, Aboufirassi A and Branlant C (2010) Alternative splicing: regulation of HIV-1 multiplication as a target for therapeutic action. Febs j 277, 867-876   DOI
4 Klotman ME, Kim S, Buchbinder A, DeRossi A, Baltimore D and Wong-Staal F (1991) Kinetics of expression of multiply spliced RNA in early human immunodeficiency virus type 1 infection of lymphocytes and monocytes. Proc Natl Acad Sci U S A 88, 5011-5015   DOI
5 Long JC and Caceres JF (2009) The SR protein family of splicing factors: master regulators of gene expression. Biochem J 417, 15-27   DOI
6 Anko ML (2014) Regulation of gene expression programmes by serine-arginine rich splicing factors. Semin Cell Dev Biol 32, 11-21   DOI
7 Shepard PJ and Hertel KJ (2009) The SR protein family. Genome Biol 10, 242
8 Mahiet C and Swanson CM (2016) Control of HIV-1 gene expression by SR proteins. Biochem Soc Trans 44, 1417-1425   DOI
9 Stoltzfus CM and Madsen JM (2006) Role of viral splicing elements and cellular RNA binding proteins in regulation of HIV-1 alternative RNA splicing. Curr HIV Res 4, 43-55   DOI
10 Ropers D, Ayadi L, Gattoni R et al (2004) Differential effects of the SR proteins 9G8, SC35, ASF/SF2, and SRp40 on the utilization of the A1 to A5 splicing sites of HIV-1 RNA. J Biol Chem 279, 29963-29973   DOI
11 Erkelenz S, Hillebrand F, Widera M et al (2015) Balanced splicing at the Tat-specific HIV-1 3'ss A3 is critical for HIV-1 replication. Retrovirology 12, 29
12 Exline CM, Feng Z and Stoltzfus CM (2008) Negative and positive mRNA splicing elements act competitively to regulate human immunodeficiency virus type 1 vif gene expression. J Virol 82, 3921-3931   DOI
13 Asang C, Hauber I and Schaal H (2008) Insights into the selective activation of alternatively used splice acceptors by the human immunodeficiency virus type-1 bidirectional splicing enhancer. Nucleic Acids Res 36, 1450-1463   DOI
14 Caputi M, Freund M, Kammler S, Asang C and Schaal H (2004) A bidirectional SF2/ASF- and SRp40-dependent splicing enhancer regulates human immunodeficiency virus type 1 rev, env, vpu, and nef gene expression. J Virol 78, 6517-6526   DOI
15 Jacquenet S, Decimo D, Muriaux D and Darlix JL (2005) Dual effect of the SR proteins ASF/SF2, SC35 and 9G8 on HIV-1 RNA splicing and virion production. Retrovirology 2, 33
16 Somberg M, Li X, Johansson C et al (2011) Serine/arginine-rich protein 30c activates human papillomavirus type 16 L1 mRNA expression via a bimodal mechanism. J Gen Virol 92, 2411-2421
17 Dhanjal S, Kajitani N, Glahder J, Mossberg AK, Johansson C and Schwartz S (2015) Heterogeneous nuclear ribonucleoprotein C proteins interact with the human papillomavirus type 16 (HPV16) early 3'-untranslated region and alleviate suppression of HPV16 late L1 mRNA splicing. J Biol Chem 290, 13354-13371   DOI
18 Makwaga O, Mulama DH, Muoma J and Mwau M (2021) Correlation of HIV-1 drug resistant mutations and virologic failure. Pan Afr Med J 39, 180
19 Dlamini Z and Hull R (2017) Can the HIV-1 splicing machinery be targeted for drug discovery? HIV AIDS (Auckl) 9, 63-75   DOI
20 Ji X, Zhou Y, Pandit S et al (2013) SR proteins collaborate with 7SK and promoter-associated nascent RNA to release paused polymerase. Cell 153, 855-868   DOI
21 Paz S, Krainer AR and Caputi M (2014) HIV-1 transcription is regulated by splicing factor SRSF1. Nucleic Acids Res 42, 13812-13823   DOI
22 Caceres JF, Screaton GR and Krainer AR (1998) A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm. Genes Dev 12, 55-66   DOI
23 Swanson CM, Sherer NM and Malim MH (2010) SRp40 and SRp55 promote the translation of unspliced human immunodeficiency virus type 1 RNA. J Virol 84, 6748-6759   DOI
24 Swartz JE, Bor YC, Misawa Y, Rekosh D and Hammarskjold ML (2007) The shuttling SR protein 9G8 plays a role in translation of unspliced mRNA containing a constitutive transport element. J Biol Chem 282, 19844-19853   DOI
25 Wong RW, Balachandran A, Ostrowski MA and Cochrane A (2013) Digoxin suppresses HIV-1 replication by altering viral RNA processing. PLoS Pathog 9, e1003241
26 Jablonski JA and Caputi M (2009) Role of cellular RNA processing factors in human immunodeficiency virus type 1 mRNA metabolism, replication, and infectivity. J Virol 83, 981-992   DOI
27 Weber J (2001) The pathogenesis of HIV-1 infection. Br Med Bull 58, 61-72
28 Zhou Z and Fu XD (2013) Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma 122, 191-207   DOI
29 Jeong S (2017) SR proteins: binders, regulators, and connectors of RNA. Mol Cells 40, 1-9   DOI
30 Das S and Krainer AR (2014) Emerging functions of SRSF1, splicing factor and oncoprotein, in RNA metabolism and cancer. Mol Cancer Res 12, 1195-1204   DOI
31 Sliskovic I, Eich H and Muller-McNicoll M (2022) Exploring the multifunctionality of SR proteins. Biochem Soc Trans 50, 187-198   DOI
32 Paz S, Lu ML, Takata H, Trautmann L and Caputi M (2015) SRSF1 RNA recognition motifs are strong inhibitors of HIV-1 replication. J Virol 89, 6275-6286   DOI
33 Tacke R and Manley JL (1995) The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities. EMBO J 14, 3540-3551   DOI