• Title/Summary/Keyword: SRED

Search Result 4, Processing Time 0.019 seconds

Technique for Estimating the Number of Active Flows in High-Speed Networks

  • Yi, Sung-Won;Deng, Xidong;Kesidis, George;Das, Chita R.
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.194-204
    • /
    • 2008
  • The online collection of coarse-grained traffic information, such as the total number of flows, is gaining in importance due to a wide range of applications, such as congestion control and network security. In this paper, we focus on an active queue management scheme called SRED since it estimates the number of active flows and uses the quantity to indicate the level of congestion. However, SRED has several limitations, such as instability in estimating the number of active flows and underestimation of active flows in the presence of non-responsive traffic. We present a Markov model to examine the capability of SRED in estimating the number of flows. We show how the SRED cache hit rate can be used to quantify the number of active flows. We then propose a modified SRED scheme, called hash-based two-level caching (HaTCh), which uses hashing and a two-level caching mechanism to accurately estimate the number of active flows under various workloads. Simulation results indicate that the proposed scheme provides a more accurate estimation of the number of active flows than SRED, stabilizes the estimation with respect to workload fluctuations, and prevents performance degradation by efficiently isolating non-responsive flows.

  • PDF

Sleep-Related Eating Disorder (수면 관련 식이 장애)

  • Park, Young-Min
    • Sleep Medicine and Psychophysiology
    • /
    • v.18 no.1
    • /
    • pp.5-9
    • /
    • 2011
  • Sleep-related eating disorder (SRED) is a newly recognized parasomnia that describes a clinical condition of compulsive eating under an altered level of consciousness during sleep. Recently, it is increasingly recognized in clinical practice. The exact etiology of SRED is unclear, but it is assumed that SRED might share features of both sleepwalking and eating disorder. There have been also accumulating reports of SRED related to the administration of various psychotropic drugs, such as zolpidem, triazolam, olanzapine, and combinations of psychotropics. Especially, zolpidem in patients with underlying sleep disorders that cause frequent arousals, may cause or augment sleep related eating behavior. A thorough sleep history is essential to recognition and diagnosis of SRED. The timing, frequency, and description of food ingested during eating episodes should be elicited, and a history of concurrent psychiatric, medical, sleep disorders must also be sought and evaluated. Interestingly, dopaminergic agents as monotherapy were effective in some trials. Success with combinations of dopaminergic and opioid drugs, with the addition of sedatives, has also been reported in some case reports.

A Load Adaptive DRED for Improving TCP Behavior in Internet (인터넷에서 TCP/IP 동작 개선을 위한 부하 적응형 DRED 알고리즘)

  • 장정식;이동호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10e
    • /
    • pp.403-405
    • /
    • 2002
  • 지금까지 TCP 혼잡 제어를 위한 여러 종류의 메커니즘들이 Connection을 적응성 있게 제어하기 위하여 사용되어 왔지만, TCP 혼잡 제어 메커니즘들은 성능상의 여러 문제점을 가지고 있는게 사실이다. 이에 IETF에서는 AQM(Active Queue Management) 메커니즘으로 RED 알고리즘을 권고했다. 그러나 이 또한 상이한 네트워크에서는 파래메터 설정에 따른 문제점이 있어, 네트워크 상황에 적절하게 대응하지 못하는 단점이 있다. 이러한 RED알고리즘의 문제점을 극복하고, 효율성을 개선하기 위해서 SRED, BLUE, FRED, DRED 등 다양한 AQM 메커니즘들이 제시되고 있다. 본 논문에서는 네트워크 트래픽 상황에 따라 적응성을 갖고 Threshold의 변경에 사용되는 패킷 손실율을 구하는데 있어 트래픽을 고려한가중치를 줌으로써 트래픽 상황을 반영하도록 했고, Threshold 설정에 있어 적응성 있는 단계를 통하여 큐 안정성을 개선하도록 하였다. 제안한 알고리즘의 성능 분석은 NS 시뮬레이터를 사용하였고, 제안한 Load Adaptive DRED 알고리즘과 DRED 알고리즘의 버퍼 관리 기법의 성능 비교 분석을 통하여 큐 안정성의 개선된 성능을 확인하였다.

  • PDF

Double Queue CBOKe Mechanism for Congestion Control (이중 큐 CHOKe 방식을 사용한 혼잡제어)

  • 최기현;신호진;신동렬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11A
    • /
    • pp.867-875
    • /
    • 2003
  • Current end-to-end congestion control depends only on the information of end points (using three duplicate ACK packets) and generally responds slowly to the network congestion. This mechanism can't avoid TCP global synchronization in which TCP congestion window size is fluctuated during congestion period. Furthermore, if RTT(Round Trip Time) is increased, three duplicate ACK packets are not correct congestion signals because congestion might already disappear and the host may send more packets until it receives three duplicate ACK packets. Recently there are increasing interests in solving end-to-end congestion control using AQM(Active Queue Management) to improve the performance of TCP protocols. AQM is a variation of RED-based congestion control. In this paper, we first evaluate the effectiveness of the current AQM schemes such as RED, CHOKe, ARED, FRED and SRED, over traffic with different rates and over traffic with mixed responsive and non-responsive flows, respectively. In particular, CHOKe mechanism shows greater unfairness, especially when more unresponsive flows exist in a shared link. We then propose a new AQM scheme using CHOKe mechanism, called DQC(Double Queue CHOKe), which uses two FIFO queues before applying CHOKe mechanism to adaptive congestion control. Simulation shows that it works well in protecting congestion-sensitive flows from congestion-causing flows and exhibits better performances than other AQM schemes. Also we use partial state information, proposed in LRURED, to improve our mechanism.