
194   Sungwon Yi et al. ETRI Journal, Volume 30, Number 2, April 2008 

The online collection of coarse-grained traffic information, 
such as the total number of flows, is gaining in importance 
due to a wide range of applications, such as congestion 
control and network security. In this paper, we focus on an 
active queue management scheme called SRED since it 
estimates the number of active flows and uses the quantity 
to indicate the level of congestion. However, SRED has 
several limitations, such as instability in estimating the 
number of active flows and underestimation of active flows 
in the presence of non-responsive traffic. We present a 
Markov model to examine the capability of SRED in 
estimating the number of flows. We show how the SRED 
cache hit rate can be used to quantify the number of active 
flows. We then propose a modified SRED scheme, called 
hash-based two-level caching (HaTCh), which uses hashing 
and a two-level caching mechanism to accurately estimate 
the number of active flows under various workloads. 
Simulation results indicate that the proposed scheme 
provides a more accurate estimation of the number of active 
flows than SRED, stabilizes the estimation with respect to 
workload fluctuations, and prevents performance 
degradation by efficiently isolating non-responsive flows. 
 

Keywords: Flow estimation, Markov model, non-
responsive flows, SRED, HaTCh. 

                                                               
Manuscript received July 25, 2007; revised Oct. 18, 2007. 
A preliminary version of the paper was presented at IEEE CDC, Dec. 2003. 
Sungwon Yi (phone: + 82 42 860 4865, email: sungyi@etri.re.kr) is with the S/W & Content 

Research Laboratory, ETRI, Daejeon, Rep. of Korea. 
Xidong Deng (email: xdeng@stcloudstate.edu) is with the Department of Electrical and 

Computer Engineering, St. Cloud State University, Minnesota, USA.     
George Kesidis (email: kesidis@cse.psu.edu) and Chita R. Das (email: das@cse.psu.edu) are 

with the Department of Computer Science and Engineering, Pennsylvania State University, 
Pennsylvania, USA. 

I. Introduction 

Measuring and monitoring traffic is an important but 
admittedly difficult problem, primarily because of the huge 
volume of traffic to be processed in high-speed networks. To 
accurately capture the characteristics of network traffic, 
measuring devices have to maintain per-flow information. 
However, the complexity of these operations has been the main 
obstacle for deploying such devices in high-speed networks. To 
address this problem, various techniques have been proposed. For 
example, a sampling technique was standardized by the IETF 
Internet Protocol Flow Information Export (IPFIX) working 
group [1], and a variation focused on implementation issues was 
investigated in [2]. Recently, a variation of a hashing scheme 
called a space-code bloom filter (SCBF) [3] was proposed to 
avoid the overhead of per-flow maintenance. An SCBF collects 
network traffic on the arrival of each packet and periodically 
stores it in permanent storage devices. The required network 
information can then be obtained offline. Therefore, SCBF can 
support fine-grained traffic information, which is essential for 
network management, planning, accounting, and billing. 

On the other hand, obtaining coarse-grained traffic information, 
such as the total number of active flows, online is important for 
congestion control and network security [4]-[7]. In this context, 
flow counting techniques, called direct bitmap and multi-
resolution bitmap, have been proposed by Estan and others in [7]. 
These techniques are based on a bitmap data structure, in which 
each source is hashed into a bit, and a bit is marked when the 
source is active. In practice, the entire bitmap is divided into blocks, 
and each block represents a different scale of addresses. The 
number of set bits, which is weighted by scaling factors, is used to 
estimate the number of active flows. In [6], a multi-resolution 
bitmap was extended to a scaled bitmap. The main advantage of 

Technique for Estimating the Number of  
Active Flows in High-Speed Networks 

 Sungwon Yi, Xidong Deng, George Kesidis, and Chita R. Das  



ETRI Journal, Volume 30, Number 2, April 2008 Sungwon Yi et al.   195 

bitmap-based approaches is that the number of flows can be 
estimated by simple operations with a limited amount of memory. 
However, it is not clear how it would perform under asymmetric 
traffic assumptions of today’s Internet traffic [8]. 

Ott and others proposed another class of technique called 
stabilized RED (SRED) [4]1). SRED has drawn wide attention 
because it proposes an on-line technique for estimating the number 
of active flows, and uses it to respond to network congestion [10]-
[12]. In SRED, a small cache memory, called the zombie list, is 
used to record the M most recently seen flows. Each cache line 
(zombie) contains the source and destination address pair, last 
arrival time, and hit count of the flow. Each arriving packet (source 
and destination address) is compared with a randomly selected 
cache line. If the addresses match (a hit), the hit count of the cache 
line is increased by 1. Otherwise (a miss), the selected cache line is 
replaced by the arriving flow’s address with a replacement 
probability r. To estimate the number of active flows, SRED 
maintains a hit frequency f(t) and updates f(t) with (1–α)f(t–1)+α in 
the case of a hit, and with (1–α)f(t–1) in the case of a miss, where α 
is a time constant. The inverse of the hit frequency (f(t)-1) is used as 
the estimation of the number of active flows. 

Although the idea of SRED, estimating the number of flows 
without maintenance of the per-flow state, is quite novel, a 
detailed performance analysis showed several limitations. For 
example, the estimated number of flows fluctuates as the number 
of flows increases in the network, which implies that the severity 
of the congestion is not accurately captured. Unstable estimation 
results from the inaccurate cache comparison process, that is, 
random comparisons for a large number of flows. Second, 
although non-responsive flows such as UDP can be identified by 
computing the hit count and calculating the total occurrence of 
the flow as described in [4], SRED still underestimates the 
number of active flows when the traffic mix includes both TCP 
and aggressive UDP connections. Here, underestimation results 
from unfair sharing of cache lines. Unlike TCP flows, non-
responsive flows do not naturally adapt their sending rates 
according to the network condition, and thereby aggressively 
occupy cache lines with SRED. This unfair sharing of cache lines 
causes more cache hits resulting in underestimation. 

To address these problems, we present a mathematical model to 
analyze the estimation capability of SRED and demonstrate how 
the steady-state hit frequency of the cache model can be used to 
estimate the number of active flows. We then propose a modified 
SRED scheme, called hash-based two-level caching (HaTCh), 
which uses hashing and a two-level caching mechanism to 
accurately estimate the number of active flows under various 
workloads. Unlike the original SRED, in which the entire cache is 

                                                               
1) In this paper, when we mention SRED, we consider only the flow estimation capability 

of SRED.  

a single block, the proposed scheme divides the cache into a fixed 
number of sub-blocks. With the hashing scheme, each arriving 
packet is hashed into one of the partitioned subcaches, and the hit 
frequency is maintained for each subcache. Due to the reduced 
size of the subcache and the number of flows per subcache, the hit 
probability of an arriving packet is improved. The hashing scheme 
stabilizes the estimation through this improved hit probability. 

The proposed two-level caching scheme, consisting of a smaller 
level 1 (L1) cache and a larger level 2 (L2) cache, is similar to the 
general two-level cache used in processor architecture design. It 
implies that an L1 cache miss results in an access to the L2 cache. 
However, the cache inclusion property is not satisfied here. An 
arriving packet is first compared with a randomly selected L1 
cache line. If the addresses match, the hit count is incremented; 
otherwise, a randomly selected L2 cache line is compared with the 
packet ID (the source and destination addresses). A hit in the L2 
cache results in the cache line being brought to the corresponding 
cache line in the L1 cache. If the addresses do not match in the L2 
cache (a miss), the L2 cache line is replaced with the packet ID 
with a given replacement probability. The purpose of the L1 cache 
in HaTCh is to isolate the non-responsive flows from the L2 cache. 
The two-level caching scheme accurately estimates the number of 
active flows by isolating the non-responsive flows to prevent 
monopolization of the L2 cache and to yield more room in the L2 
cache for the conforming flows.  

We extend the SRED analytical model for the proposed two-
level caching scheme to demonstrate its effectiveness in isolating 
the non-responsive flows. We then analyze the simulations NS-2 
performance of the HaTCh scheme through extensive using the 
simulator [9]. Estimation accuracy and stability of estimation in the 
presence of non-responsive flows are used as the main 
performance metrics to compare the proposed scheme with SRED. 
The simulation results indicate that the two-level scheme stabilizes 
 

 

Fig. 1. State diagram of .X In this figure, m and mijδ represent 
the present and the next states. ( , )ijP m mδ denotes the 
cache miss probability when a flow ID i is compared with a 
cache line j, and r is the replacement probability. 

1 ( , )ijP m m rδ− ⋅
( , )ijP m m rδ ⋅  

(arriving ID=i,  
random cache line ID=j) 

m ijmδ  

m1

mi

mj

mN

m1 

mi+1 

mj-1 

mN 

( , )ijP m m rδ ⋅  
(arriving ID=j,  
random cache line ID=i) 

1 ( , )ijP m m rδ− ⋅

...

...

...

. . . 

. . . 

. . . 

……

 



196   Sungwon Yi et al. ETRI Journal, Volume 30, Number 2, April 2008 

the estimation and improves the accuracy of estimation for various 
workloads. In particular, HaTCh out-performs SRED when the 
traffic included non-responsive flows. The rest of this paper is 
organized as follows. In section II, we present a mathematical 
model to analyze the estimation capability of SRED. We describe 
the limitations of SRED in section III. The proposed scheme is 
detailed in section IV. In section V, the simulation results are 
presented followed by the concluding remarks in section VI.  

II. SRED Model for Estimating the Active Flow Number 

The key idea of SRED is to relate the cache hit frequency to the 
number of active flows. However, this was not formally 
demonstrated in the original paper [3], which relied on simulation 
to arrive at the conclusion. In this section, we present a Markov 
model to understand the concept of SRED and analyze its 
estimating behavior. 

Consider a small cache memory, or zombie list, with M lines, 
and N independent flows, each with a rate of λi packets/s. Here, the 
packet arrival process may not be necessarily Poisson. We only 
assume that the flow IDs of the multiplexed sequence of arriving 
packets are independent. If we assume Xi is the number of cache 
lines with the flow ID i in the cache and X  is the vector that 
maintains the number of cache lines occupied by each flow, then 
X can be presented as a Markov chain whose transitions occur at 

packet arrival time X , and its state space can be defined as 

1

, and
N

i
i

X M
=

=∑  

( )T
1 ,

1
0 , .

N

i N i i M N
i

X m m m m m M m M S
=

⎧ ⎫
∈ = ≤ ≤ = ≡⎨ ⎬

⎩ ⎭
∑L L  

Here, the transition rates of the Markov chain are dependent on 
both the replacement probability and the outcome of the cache 
comparison between an arriving packet and a randomly selected 
cache line. Based on SRED’s functionality, for a given cache state 
m , the number of cache lines for each flow in the cache remains 
the same either in the event of a cache hit, or in the event of a 
cache miss with probability 1–r. However, the state of the cache 
changes from m  to ijmδ  in the event of a cache miss with 
replacement probability r. A pictorial view of the state space 
transition is given in Fig. 1. When an arriving packet has a flow 
ID i, and a randomly chosen cache line belonging to flow ID j in 
the given cache state m  is replaced by ID i with the replacement 
probability of r, the new state ijmδ  is defined as 

( )T

1 1 1 if ,ij i j Nm m m m m i jδ = + − <L L L     (1) 

for all the cache states m  such that mi < M and 0 < mj. If i > j, 
then the i and j terms are swapped. For a given state of m , the 

probability of a cache hit is the product of the probability that 
an arriving packet has the flow ID i and the probability that a 
randomly selected cache line has the same flow ID. Similarly, 
the probability of a cache miss is the product of the probability 
that an arriving packet has the flow ID i and the probability that 
a randomly selected cache line has a different flow ID than i. 
Therefore, the transition probability of this cache model can be 
written for a cache hit or a cache miss without replacement as 

1 , 11 1

( ( 1) ( ) )
( , ) ( , )(1 )

(1 ).

hit miss

N N
ji i i

N N
i i jk k k k

i j

P X t m X t m
P m m P m m r

mm
r

M M
λ λ

λ λ= == =
≠

+ = =

≡ + −

= ⋅ + ⋅ −
Σ Σ∑ ∑

    (2) 

For a cache miss that is replaced with probability r, the 
expression is 

, 1 1

( ( 1) ( ) )

( , ) .

ij

N
j i

ij N
i j k k
i j

P X t m X t m

m
P m m r r

M

δ

λ
δ

λ= =
≠

+ = =

≡ = ⋅
Σ∑        (3) 

In the above expressions, 1/ N
i k kλ λ=Σ  denotes the probability 

that an arriving packet has a flow ID i, and the mi/M and mj/M 
terms represent the probability that a randomly selected cache 
line from the zombie list has the same and different IDs, 
respectively. The steady-state hit frequency of the given cache 
model can be expressed by the following theorem. 

Theorem 1. Under the assumption of independent packet 
flow identifiers, the hit frequency, calculated by a first-order 
autoregressive process for the single cache system (SRED), 
converges in the steady-state2) to 

,

1

1 1

!

n

M N

m
N n
n N

n i i
N

m S iMN k k

m m
H

G M

λ
λ

λ

=

∈ = =

⎛ ⎞
Π⎜ ⎟

⎜ ⎟= ⋅
⎜ ⎟Σ
⎜ ⎟
⎝ ⎠

∑ ∑ .              (4) 

Proof . For a given state z such that mi < M and 0 < mj, the 
detailed balance equations of this system for any r becomes 

( ) ( , ) ( ) ( , ),ij ij ijm P m m m P m mπ δ π δ δ=              (5) 

where
1

( , ) j i
ij N

k k

m
P m m

M
λδ

λ=

= ⋅
Σ

and 
1

1( , ) .ji
ij N

k k

mP m m
M

λ
δ

λ=

+
= ⋅

Σ
 

Here, ( )mπ is the steady-state distribution of X . Thus, (5) 
becomes 
                                                               

2) Here, we do not assume that the range of the cache size (M) is greater than the number of 
flows (N). However, for the flows that are not well mixed (that is, burst flows and a large 
number of flows), (M < N), the assumption of independent packet flow identifiers can be 
weakened; thus, the estimation performance can be degraded. We investigate the estimation 
performance for these cases in detail by simulations in sections III and V. 



ETRI Journal, Volume 30, Number 2, April 2008 Sungwon Yi et al.   197 

1
( ) ( ) .j i

ij
j i

m
m m

m
λ

π π δ
λ
+

= ⋅                   (6) 

We have found that the detailed balance equation (5) is solved by  

 1( ) ,
!

nm
N n
n MN

n

m G
m
λ

π == Π                        (7)  

where the normalizing constant is  

,
1

.
!

n

M N

m
N n

MN n
m S n

G
m
λ

=
∈

= ∑ ∏                      (8) 

Thus, we can conclude that the process X is time reversible. 
From (6), (7), and (8) we get 

11

,( ) .
! ( 1)! ( 1)!

jn i
mm m
jN n i

ij n i j MN
n i j

m G
m m m

λλ λ
π δ

−+

≠= Π ⋅ ⋅
+ −

 

Now, let us denote f(t) as the hit frequency, and H as the 
steady-state hit probability of the cache. Then, H includes the 
summation of all states as 

,

( ) ( , ).
M N

hit
m S

H m P m mπ
∈

= ∑                    (9) 

In practice, H can be estimated by a first-order autoregressive 
process, defined as 

( ) (1 ) ( 1) 1f t f tα α= − − + ⋅ {hit at t-th packet} 

for 0<α<1. In this expression, 1{hit at t-th packet} represents 
an indicator function of a cache hit. It is clear that H is a 
limiting point of the process f, that is, lim ( ) .t f t H→∞ ≡ We 
assume that the choice of α is such that f(t) converges faster 
than the rate of change of N. (TCP estimates the round-trip time 
using an autoregressive process, too.) Here, α plays a role as a 
time constant that determines the speed of the model to reach 
the steady-state. Finally, from (2), (7), and (9), we get (4) and 
thus, prove theorem 1.                              �                                                               

Observe that if each λi in the summand of the numerator of (4) 
is replaced by the maximum value of λmax, then H is less than or 
equal to max 1/ .N

k kλ λ=Σ  Similarly, if each λi in the summand of 
the numerator of (4) is replaced by the minimum value of λmin, 
then H is greater than or equal to min 1/ .N

k kλ λ=Σ  Therefore, we 
have the following two corollaries. 

Corollary 1. 

min max1 1
.N N

k kk k
Hλ λ λ λ

= =
≤ ≤∑ ∑             (10) 

Corollary 2. If all the arriving rates, λi, are equal for all N, 
then the upper and lower bounds of H in (10) are equal, leading 
to H=1/N. 

This expression shows that the number of active flows, N, can 
be computed from the steady-state hit frequency, H. We 
calculated the steady-state hit frequency and the number of flows 
using (4) and compared them with the simulation results. Due to 

Table 1. Estimated number of flows. 

Estimated number by 
simulation Number of 

flows used
Memory 

size 
Estimated 

number by (4) 
r =1.0 r =0.25 r =0.01

5 10 31.81 12.59 10.33

10 10 16.20 11.70 10.21

40 10 11.52 10.14 9.91
10 

80 10 10.57 9.42 10.0

25 50 161.78 63.31 52.86

50 50 88.01 56.64 51.35

200 50 59.65 50.24 51.78
50 

400 50 52.73 52.13 50.86

50 100 334.71 137.33 109.76

100 100 182.71 115.32 108.10

400 100 112.58 104.56 106.11

 
 

100 

800 100 116.25 110.46 105.96

  
the large state space (M+N-1CM), we first investigated the accuracy 
of our model with a relatively small cache memory (10 cache 
lines) and a small number of flows (10 or less) by enumerating 
the entire state space. We then extended the validation for large 
cache size (up to 800 cache lines) and a greater number of flows 
(up to 100) by using various state- space truncation techniques. 

When the same arrival rate was used for all flows, the 
estimation using (4) was exactly the same as the actual number of 
flows. Table 1 shows a comparison of the results of the estimation 
by (4) and the simulation results. (We used the NS-2 simulator, 
and the simulation environment is described in section III.) The 
results indicate that the model is quite robust in estimating the 
number of flows. However, the simulation results show that the 
accuracy of estimation depends on the cache size, M, and the 
replacement probability, r. Larger M, comparable to the number 
of flows, and a smaller r help improve estimation accuracy. 

III. Limitations of SRED 

To examine the capability of SRED in estimating the number 
of active flows, we performed simulations using a dumbbell 
topology with a common link bandwidth of 45 Mb/s. In the 
simulations, each source node initiates data transmissions using 
FTP over TCP between 0 to 1 second. Although there are many 
versions of TCPs, such as Reno, Sack, and Vegas [13]-[15], we 
use TCP Reno [16], which has a basic congestion avoidance 
mechanism, with the maximum window size of 45 packets 
since the main focus of the research is traffic 
measurement/estimation. Each intermediate node has a buffer 
size of 600 packets, while the packet size is fixed at 1 kb. 



198   Sungwon Yi et al. ETRI Journal, Volume 30, Number 2, April 2008 

    

Fig. 2. Estimated number of flows with SRED. 

0 20 40 60 80 100
Time (s) 

(a) 20 TCP flows 

0 

20 

40 

E
st

im
at

ed
 

no
. o

f f
lo

w
s 

0 20 40 60 80 100
Time (s) 

(b) 100 TCP flows 

0 

100 

200 

E
st

im
at

ed
 

no
. o

f f
lo

w
s 

0 20 40 60 80 100
Time (s) 

(c) 1,000 TCP flows 

0 

1,000 

2,000 

E
st

im
at

ed
 

no
. o

f f
lo

w
s 

0 20 40 60 80 100
Time (s) 

(d) 4,000 TCP flows 

0 

4,000 

8,000 

E
st

im
at

ed
 

no
. o

f f
lo

w
s 

 
SRED is deployed at the intermediate node to estimate the 
number of active flows with a cache size of 1,000 lines, r = 0.25 
and α=0.001, as used in [4]. 

We investigate two important factors that most affect the 
estimation performance of SRED: stability of estimation and 
the impact of non-responsive flows. 

1. Stability 

Figure 2 shows the estimated number of active flows with 
SRED when 20, 100, 1,000, and 4,000 flows are used. The 
estimation capability of SRED is quite accurate with a small 
number of flows, but it greatly fluctuates as the number of 
flows increases. The fluctuation is due to the low hit probability 
when many flows are used. 

2. Impact of Non-responsive Flows  

The effect of non-responsive flows (generally UDP), when 
mixed with TCP flows has been extensively studied in the context 
of active queue management (AQM) schemes [17], [18]. These  

Table 2. Impact of non-responsive flows in estimating the number of 
flows. 

Estimated number of flows Fraction of misbehaving 
flows in total workload 2m cλ λ= ⋅  3m cλ λ= ⋅  

0 % 10.000 10.000 

10 % 9.309 8.001 

20 % 9.000 7.541 

30 % 8.897 7.529 

40 % 8.907 7.712 

50 % 9.902 8.000 

 
 
studies tried to detect the non-responsive flows with a minimum 
amount of per-flow information. Another approach, called 
stochastic fair blue (SFB) [19], controls non-responsive flows 
without using per-flow information via a group of hash tables. 

A problem of hash-based techniques such as SFB and SRED is 
that when many non-responsive flows are present in a network, 
the hash table is contaminated by these flows, and performance is 
significantly degraded. We demonstrate the impact of non- 
responsive flows using the SRED mathematical model in Table 2 
and a simulation study presented in section V. 

As shown in Table 1, we used a cache size of 10 lines with 10 
flows and set the arrival rate of non-responsive flows (λm) to 2 and 
3 times that of the conforming flows (λc) to mimic the behavior of 
non-responsive flows in (4). 

The small memory size and number of flows are not enough to 
capture the exact effect of non-responsive flows, but it helps us to 
predict the tendency when many flows are used. Table 2 shows 
that as the proportion of non-responsive flows increases, the 
number of active flows is underestimated. When non-responsive 
flows become a dominant part of the traffic, the estimated number 
starts to recover the underestimation that results from memory 
contention among non-responsive flows. These results show a 
trend similar to that of the simulation result for 500 flows (TCP + 
UDP) presented in section V (Fig. 6). 

In summary, SRED exhibits unstable estimation with a large 
number of flows and underestimation in the presence of non-
responsive flows. 

IV. The Proposed Hash-Based Two-Level Caching 
Scheme (HaTCh) 

Based on the discussions in the previous section, we propose 
the HaTCh flow estimation scheme to minimize SRED’s innate 
problems. The HaTCh scheme consists of two parts: a hashing 
scheme to stabilize estimation, and a two-level caching scheme 
to isolate the non-responsive flows that contaminate the zombie 



ETRI Journal, Volume 30, Number 2, April 2008 Sungwon Yi et al.   199 

list and lead to underestimation. 

1. Hash-Based Estimation 

The key idea of the hashing scheme is based on the 
observation that SRED’s hit probability is low when there are 
many flows. This problem can be alleviated by using a hashing 
scheme. To implement hashing, the single cache memory 
(zombie list) is partitioned into k small chunks, called subcaches. 
Whenever a packet arrives, the packet is hashed into a subcache 
using the source and destination addresses, and a cache line is 
randomly selected for comparison from the subcache. A 
connection is always hashed to the same subcache with this 
technique. Each subcache maintains its own hit frequency and 
estimated number of flows. The estimated number of flows per 
subcache is aggregated to find the total number of estimated 
flows. The performance of the hash-based estimation may 
degrade when most active flows are hashed into one or two 
subcaches, but this can be alleviated by periodically scattering 
the hash function as noted in [20]. When all the flows have the 
same sending rate and round-trip time, the hit probability of a 
flow is 1/N under SRED; however, the hit probability increases 
to k/N when k subcaches are used in HaTCh. This improved hit 
probability helps to achieve accurate and stable flow estimation. 

2. Two-Level Caching Scheme 

Non-responsive flows tend to send more packets than 
conforming flows, and this increases the hit rate. Therefore, 
developing an efficient scheme to isolate excess packets from the 
memory is the key for accurate estimation. We accomplish this 
through a two-level cache design.  

Figure 3 shows the basic organization of HaTCh, which 
combines hashing and two-level caching. The structure of the two-
level caching proposed here is similar to that of the general two-
level caching scheme. The major differences are that the inclusion 
property is not necessarily satisfied in the two-level cache model, 
and the L1 and L2 cache update operations are also different. The 
L1 cache is smaller than the second level L2 cache, and each of the 
two caches is divided into k subcaches (blocks). Note that there is a 
corresponding subcache in L2 For each subcache in L1. 

An arriving packet is hashed into one of the L1 subcaches 
using the source and destination addresses. Then, a randomly 
selected cache line from the L1 subcache is compared with the 
arriving packet. If there is an L1 cache hit (case 1 in Fig. 3), the hit 
count of the cache line is increased by 1, but the hit frequency of 
this subcache remains the same. Otherwise, the corresponding L2 
subcache is selected. Then, a randomly selected L2 cache line in 
the corresponding subcache is compared with the arriving packet. 
If there is an L2 cache hit (case 2 in Fig. 3), the previously 
selected L1 cache line is updated with this L2 cache line. The hit 

  

Fig. 3. HaTCh (hash-based two-level caching) architecture. 

New 
packet

Hash 
(SRC, DST)

L1 cache

Subcache 0 

Subcache 1 

Subcache 2 

Subcache k-1

L2 cache 
(zombie list) 

Subcache 0 

Subcache 1 

Subcache 2 
(cleared) 

Subcache k-1 

Update hit 
frequency & 
# of flows 

① Hit

① 
Miss

① Miss

② Hit 

③ Update 

② Miss 

③ 

④ 

Case 1: L1 hit 
Case 2: L1 miss / L2 hit 
Case 3: L1 miss / L2 miss Replace cache line 

with probability r 

 
 
count of the L1 cache line is set to 1, and the L2 cache line is then 
cleared. If the L2 cache misses (case 3 in Fig. 3), the L2 cache line 
is replaced with the arriving packet with probability r. 

Whether there is a hit or miss in the L2 cache, the hit 
frequency and the estimated number of flows for the subcache 
is recalculated followed by the total number of flows. The 
sequence of operations for the three cases is shown by the solid, 
dotted, and dashed lines in Fig. 3. 

The key features of HaTCh are following. First, HaTCh takes 
advantage of the improved hit probability by hashing in both L1 
and L2 caches. This stabilizes the estimation process of HaTCh. 
Second, the hit frequency is recalculated only when there is an 
L1 cache miss. The L1 cache is updated only when a flow hits 
the L2 cache; thus, the L1 cache is generally shared by the flows 
that hit the L2 cache. Filtering these flows to the L1 cache 
provides a fair chance for all the flows to update the hit frequency. 
Third, on an L2 cache hit, the selected cache line is cleared to 
yield room for the subsequent conforming flows using a 
mechanism called L2 cache cleaning. Ideally, the L2 cache 
(zombie list) should be shared uniformly among all competing 
flows to yield an accurate flow estimation. Although the non-
responsive flows are filtered in the L1 cache, the flows that 
missed the L1 cache fill the L2 cache more aggressively than 
conforming flows. Therefore, the cleaning mechanism in the L2 
cache also contributes to fair sharing of the L2 cache. 

3. Preliminary Model of the HaTCh Scheme 

In this section, we present a mathematical model for the 
proposed HaTCh scheme to demonstrate its effectiveness in 
isolating non-responsive flows. Unlike the SRED model 
previously presented, where we were able to compute the hit 
frequency from the steady-state distribution of the cache lines 
occupied by each flow, here, we simply show how the proposed 
scheme controls the non-responsive flows. The model for HaTCh 
is extremely complex; thus, state-space enumeration and 



200   Sungwon Yi et al. ETRI Journal, Volume 30, Number 2, April 2008 

computation is expensive. Instead of focusing on the solution of 
the steady-state probabilities, we show through a Markov model 
why two-level caching is more effective than SRED.  

The model extends the single cache design to capture the two-
level cache memory with M1 lines for the L1 cache and M2 lines 
for the L2 cache (M1≪M2), and N independent flows. If we 
assume that (Xi, Yi) are the numbers of cache lines with the flow 
ID i in the L1 and L2 caches respectively, and ( , )X Y is a pair 
of vectors representing the number of cache lines in L1 and L2 
occupied by each flow, then ( , )X Y represents the discrete state 
model of the system. Now the state space for ,X Y can be 
defined as 

( ){ }
( ){ }

1 2

T
1 1 11

T
1 2 21

, ,

0 , ,

0 , ,

and .

N
i N i i Xi

N
i N i i Yi

M M N X Y

X c c c c c M c M S

Y m m m m m M m M S

S S S

=

=

∈ = ≤ ≤ = ≡

∈ = ≤ ≤ ≤ ≡

≡ ×

∑

∑

L L

L L  

Let us assume an arriving packet has a flow ID i, a randomly 
selected cache line from the L1 cache has a flow ID j, and a 
randomly selected cache line from the L2 cache has a flow ID k. 
For a given cache state ( , )c m , if there is an L1 cache hit or miss 
in both the caches and the cache line is not replaced in the L2 
cache, the number of cache lines for each flow in both caches 
remains the same, ( , )c m . On the other hand, if there is an L1 
cache miss and L2 cache hit, the state changes to the next 
state ( , )ij c mγ , where ci=ci+1, cj=cj–1, and mi=mi–1. If both L1 
and L2 caches incur misses, and the L2 cache is replaced with the 
replacement probability of r, the state changes to another state 

( , )ij c mη , where mi=mi+1 and mk=mk–1.  
For a given state ( , )c m , the probability of an L1 cache hit is 

the product of the probability that an arriving packet has the flow 
ID i and the probability that a randomly selected L1 cache line 
has the same flow ID. Accordingly, the probability of an L1 
cache miss and L2 cache hit is the product of the probability that 
an arriving packet has the flow ID i, the probability that a 
randomly selected L1 cache line has a flow ID other than i, and 
the probability that a randomly selected L2 cache line has the 
flow ID i. Similarly, the probability of both L1 and L2 cache 
misses is computed by considering the probability that both the 
L1 and L2 cache lines have different flow IDs other than i. 

Now, the transition probability of the two-level cache model 
can be written for an L1 cache hit or for miss in the both caches 
and without replacement in the L2 cache as 

( )
( ) ( )

, , 1
,1 1 11 1 1

( , )( 1) ( , ) ( , )( ) ( , )

( , ), ( , ) ( , ), ( , ) (1 )

(1 ).

hit miss

N
N ji i k i
i j kN N Ni j i ki z z zz z z

P X Y t c m X Y t c m

P c m c m P c m c m r
cc m

r
M M m

λ λ

λ λ
=

≠ ≠=
= = =

+ = =

≡ + −

= + −∑ ∑
∑ ∑ ∑

 (11) 

For an L1 miss and an L2 hit, the state transition probability 
becomes 

( )
( )

, 1
1 1 1

1
1 1 1

( , )( 1) ( , ) ( , )( ) ( , )

( , ), ( , )

(1 ) .

ij

ij

N j i i
i j N Ni j

z zz z

N i i i
N Ni

z zz z

P X Y t c m X Y t c m

P c m c m

c m
M m

c m
M m

γ

γ

λ

λ

λ

λ

=
≠

= =

=

= =

+ = =

≡

=

= −

∑
∑ ∑

∑
∑ ∑

     

(12)

 

For misses in both caches and the L2 cache line being 
replaced with probability r, the equation becomes 

( )
( )

, , 1
, 1 1 1

( , )( 1) ( , ) ( , )( ) ( , )

( , ), ( , )

.

ij

ij

N j k i
i j k N Ni j i k

z zz z

P X Y t c m X Y t c m

P c m c m r

c m
r

M m

η

η

λ

λ
=

≠ ≠
= =

+ = =

≡

= ∑
∑ ∑

   

(13)

 

Note that these equations are derived using the same context 
that we used for SRED model. Therefore, for the two-level 
cache under HaTCh, we can prove the following theorem 
following the idea of (8). 

Theorem 2. Under the assumption of independent packet 
flow identifiers, the hit frequency calculated by a first-order 
autoregressive process for the two-level cache system (HaTCh) 
converges to 

1 2

1 2

( , ) , ,

( , ) , , 1 1 1 1

( , ) (( , ), ( , ))

( , ) (1 )

M M

M M

ij
c m S S N

N
i i i

N N
c m S S N i z zz z

H c m P c m c m

c m
c m

M m

π γ

λ
π

λ

∈

∈ =
= =

=

= −

∑

∑ ∑
∑ ∑

  

(14) 
in the steady-state. 

In this equation ( , )c mπ  represents the steady-state 
distribution of ( , )X Y . Unlike the SRED model, it is difficult 
to find a closed form expression for ( , )c mπ . Therefore, 
instead of computing the state probability distribution, we use 
the HaTCh model (as in (14)) to explain how HaTCh isolates 
non-responsive flows and improves the estimation accuracy as 
compared to SRED.  

The steady-state hit frequency is determined by the steady-state 
cache line distribution and the steady-state hit probability as 
shown in (4) and (14). In (4), for the SRED model, the effect of 
non-responsive flows is magnified by both the arrival rate of the 
non-responsive flows, λi, and the number of cache lines occupied 
by the flows, mi/M, which is proportional to the arrival rate. This 
leads to underestimation by SRED when non-responsive flows 
are present.  

In contrast, (14) clearly indicates how HaTCh effectively 



ETRI Journal, Volume 30, Number 2, April 2008 Sungwon Yi et al.   201 

isolates non-responsive flows and yields more accurate 
estimation. First, HaTCh clears the selected L2 cache line on an 
L2 cache hit to create more room for the subsequent conforming 
flows, and this contributes to a fair distribution of the L2 cache 
lines for all active flows. The term 1/ N

i z zm m=Σ in (14) captures 
this because it represents the probability that the flow ID in the 
L2 cache is i. Second, the distribution of the L1 cache lines, 
which is occupied by other flows, the (1–ci/M1) term in (14) 
mitigates the effect of arrival rate of the non-responsive flows, λi. 
We validate our claim about the effectiveness of HaTCh through 
simulation results in the next section. 

V. Simulation Results 

The HaTCh scheme was simulated to analyze estimation 
stability and the impact of non-responsive flows. We configured 
HaTCh with a hash size (k) of 10, and L1 and L2 cache sizes as 
100 and 1,000 lines, respectively. The L1 cache size is fixed at 
10% of the L2 cache size, which in turn is kept closer to N. The 
results are summarized below. 

1. Stability 

Figure 4 shows the estimated number of active flows with 
HaTCh for two different r values of 0.25 and 0.01 when 20, 
100, 1,000, and 4,000 TCP flows are used. The estimated 
number of flows is remarkably stable compared to Fig. 2 at the 
cost of a little bit of more delay. However, hatch also shows a 
tendency to underestimate the number of flows when r is 0.25 
as the workloads increase. The accuracy of the estimation is 
significantly improved when r is 0.01 as was shown in the 
previous section. Up to 1,000 flows, the estimated number of 
flows oscillates within a 20% range with HaTCh. As the 
number of flows increases, the fluctuation increases. Also, the 
number of flows is underestimated due to traffic bursts and 
insufficient cache size. 

Theoretically, SRED-like mechanisms (including HaTCh) can 
keep track of N/r flows as discussed in [4]. We observed that if N 
is greater than the number of L2 cache lines, M2, the HaTCh 
performance starts to degrade, that is, oscillation exceeds 20% 
ranges. However, unlike SRED, HaTCh shows smooth 
(damped) oscillation even for 8,000 TCP flows, but the 
oscillation gradually increases as the number of flows increases 
from 1,000 to 8,000. Since the memory requirement for each 
cache line is very marginal (about 16 B), we believe that the L2 
cache can accommodate a large number of flows (16 MB L2 
cache can support 1 million flows within 20 % error bound). 

Assuming a perfect hash function, the optimal hash size 
could be the same as the L2 cache size, since all the flows 
could be hashed into exactly one cache line. In the following 

     

Fig. 4. Estimated number of flows with HaTCh. 

0 20 40 60 80 1000

20

40

Time (s) 

E
st

im
at

ed
  

no
. o

f f
lo

w
s 

0 20 40 60 80 100
0

100

200

Time (s) 

E
st

im
at

ed
  

no
. o

f f
lo

w
s 

0 20 40 60 80 100
0

1,000

2,000

Time (s) 
E

st
im

at
ed

  
no

. o
f f

lo
w

s 

0 20 40 60 80 100
0

4,000

8,000

Time (s) 

E
st

im
at

ed
  

no
. o

f f
lo

w
s 

(a) 20 TCP flows 

(b) 100 TCP flows 

(c) 1,000 TCP flows 

(d) 4,000 TCP flows 

r= 0.01
r= 0.25

r= 0.01
r= 0.25

r= 0.01
r= 0.25

r= 0.01
r= 0.25

 

 

Fig. 5. Impact of hash size on the estimated number of flows 
(r=0.01). 

0
20

40
60

80
100

0

2,000

4,000

5 
10 

40

No hash 
Hash size

Time (s)

E
st

im
at

ed
  

no
. o

f f
lo

w
s 

 
 
simulation, we examined the impact of k on the estimation 
behavior of HaTCh with 2,000 TCP flows, while the total 
memory requirement remains the same (1,000 cache lines). 
Figure 5 depicts the estimation results of HaTCh with different 
hash sizes. As noted in the comparison between SRED and 
HaTCh, hashing with the L2 cache cleaning mechanism 
generally degrades the response time, especially when a small 
number of flows is used. The delay is due to the time required to 
fill the L2 cache lines. Although the hash size of 40 outperforms 
all other cases in terms of accuracy, it also has the longest 
response time. We leave this as a design study that optimizes the 



202   Sungwon Yi et al. ETRI Journal, Volume 30, Number 2, April 2008 

   

Fig. 6. Impact of non-responsive flows on estimation of the 
number of flows with SRED. 

0
10 

20 
30 

40
50

UDP/total workload (%)
0 

20 
40 

60 
80 

100 
0 

1,000

2,000

3,000

Time (s) 

E
st

im
at

ed
  

no
. o

f f
lo

w
s 

(a) λUDP=2 · λfair 

0
10 

20 
30 

40
50

UDP/total workload (%)
0 

20 
40 

60 
80 

100 
0 

1,000

2,000

3,000

Time (s) 

E
st

im
at

ed
  

no
. o

f f
lo

w
s 

(b) λUDP=3 · λfair 

 
 
accuracy and response time of the system, and thus we use k =10 
for the following simulations. 

2. Impact of Non-responsive Flows  

To demonstrate the effect of non-responsive flows on HaTCh 
performance, we carried out simulations with different sending 
rates of non-responsive UDP flows. We also varied the UDP traffic 
workload from 0 to 50% of the total workload. Figure 6 shows the 
results of SRED estimation with 500 flows. In Fig. 6(a), we set the 
sending rate of the non-responsive flows (λUDP) to 2 times the fair 
share of the link bandwidth (λfair). Although the estimated number 
of flows goes down slightly, the fluctuation is not alleviated. The 
impact of non-responsive flows is more pronounced when we 
increase the UDP sending rate to 3 times the fair share of the link 
bandwidth shown in Figure 6(b). Here, SRED begins to 
underestimate the number of flows as the UDP workload increases 
up to 30%, and the estimation later recovers as the UDP flows 
becomes a dominant part of the traffic (40 and 50%). 

We repeated the same experiments using HaTCh. Note that we 
used different scaling factors in the graphs to show the results. In 
Fig. 7(a), HaTCh’s estimation is remarkably stable, and the non-
responsive flows are successfully isolated as expected. HaTCh 
shows the same performance up to 20% of the UDP workload 
shown in Fig. 7(b) as well. As the UDP workload increases, 
HaTCh also shows gradual performance degradation since a large 
number of excess packets from non-responsive flows cannot be 
captured in the L1 cache. However, the estimation error is 
significantly reduced with HaTCh as compared to SRED. 

 

Fig. 7. Impact of non-responsive flows on estimation of the 
number of flows with HaTCh. 

0 
10 

20 
30 

40 
50

UDP/total workload (%)
0

20
40

60
80

100
0

500

Time (s)

E
st

im
at

ed
  

no
. o

f f
lo

w
s 

(a) λUDP=2 · λfair 

0 
10 

20 
30 

40 
50

UDP/total workload (%)
0

20
40

60
80

100
0

1,000

Time (s)

E
st

im
at

ed
  

no
. o

f f
lo

w
s 

(b) λUDP=3 · λfair 

1,000

500

 
 

The performance of HaTCh is not significantly affected by the 
size of the L1 cache as long as the number of L1 cache lines is 
greater than the number of non-responsive flows. The size of the 
L1 and L2 cache lines can be determined based on the target 
number of non-responsive flows and the target number of active 
flows. In our experiments, we set the L1 cache size to 100 lines 
to control up to 100 non-responsive flows. This configuration 
provides the best performance for our simulation environment, 
where HaTCh effectively isolates up to 100 UDP flows (20% of 
total workload) as shown in Fig. 7(b). 

The impact of TCP sources with heterogeneous round-trip 
times (RTTs) is an important factor that affects the performance 
of AQM schemes. TCP flows with short RTTs slow down the 
transmission rates quickly after congestion notification (packet 
drop) of an AQM scheme, but they recover quickly compared to 
those with long RTTs. Therefore, an AQM scheme has to react 
differently for TCP sources with different RTTs to achieve fair 
sharing of bandwidth. However, flow estimators such as HaTCh 
have no control on transmission rates of traffic sources. 
Therefore, HaTCh performance on TCP sources with 
heterogeneous RTTs can be predicted by investigating the impact 
of non-responsive flows. The simulation results with TCP 
sources that experience different RTTs (varied between 60 ms 
and 540 ms) exhibited the same trend shown in Figs. 6 and 7. 

3. Impact of HaTCh Configuration Parameters 

Finally, we examine the impact of two major configuration 
parameters, the second-level cache size M2 and the hash size k, on 
the performance of HaTCh. Initially, we set the L2 cache size, M2, 



ETRI Journal, Volume 30, Number 2, April 2008 Sungwon Yi et al.   203 

Table 3. Impact of L2 cache size and hash size (relative error). 

Ratio of L2 cache size  
to number of flows L2 cache 

size (M2) 
Hash 

size (k) 

Number of flows 
per subcache 
when M2 = N 1:1 1:2 1:4 

2 100 0.11618 0.20050 0.29553

4 50 0.08427 0.13891 0.26878200 

8 25 0.06154 0.07143 0.25603

5 100 0.11986 0.18994 0.25861

10 50 0.05328 0.10267 0.25854500 

20 25 0.01650 0.08750 0.20056

10 100 0.08164 0.12490 0.24025

20 50 0.07293 0.09345 0.229931000 

40 25 0.02074 0.07790 0.24310

20 100 0.05876 0.106871 0.25973

40 50 0.02495 0.090319 0.267332000 

80 25 0.01679 0.083062 0.28200

 

to 200 lines, and increased it up to 2,000 lines. We adjusted k to 
make the number of active flows per subcache constant (100, 50, 
and 25 flows) for each L2 cache size when the L2 cache size is 
equal to N. Then, we increased N to two and four times that of M2. 
In all these experiments, the L1 cache size was set at 10% of the 
L2 cache size because that provided the optimal configuration. 

Here, we summarize the performance of HaTCh by presenting 
the relative error of the estimated number of flows, defined as the 
ratio of the standard deviation (σ) to the mean (μ) of the estimated 
number of flows. In Table 3, the relative error was bounded within 
11% regardless of the hash size when the L2 cache size and the 
number of flows were the same. Notably, HaTCh performs better 
as the number of flows (accordingly the L2 cache size is larger) 
increases, because a large number of flows multiplexed at the 
router reduces the impact of burst traffic. A large k helps in the 
accurate estimation of N at the cost of little additional delay. As the 
numbers indicate, the relative error is about 6% when k is 20, and 
is reduced to less than 2% for k = 80 when N = 2,000. 

The trend also indicates that HaTCh can provide more accurate 
estimate of N if the number of flows is higher than 2,000, which is 
likely to be true in many practical cases. As N increases to two to 
four times M2, the accuracy of estimation suffers, although the 
overall trend in the impact of N and k remains valid. For the 1:2 
ratio, the error is limited to 8% when N = 2,000 and k = 80. 
However, the relative error is high for the 1:4 ratio, which 
suggests that number of flows should not exceed twice the size of 
the L2 cache to limit the flow estimation error to 10%. Moreover, 
the impact of the hash size on the estimation accuracy was 
reduced because of the presence of more flows contending for the 
cache lines. 

VI. Concluding Remarks 

Measuring and monitoring network traffic has been an active 
area of research in the Internet community for better network 
management, planning and accurate billing. However, huge traffic 
volumes and the complexity of memory management required for 
per-flow monitoring has eluded researchers attempting to find an 
efficient solution. In this paper, we focused on a flow estimation 
technique called SRED since it accurately estimates the number of 
active flows without maintenance of per-flow states.  

First, we developed a mathematical framework for analyzing 
the estimation behavior of SRED. The model showed that the 
steady-state hit frequency of the SRED cache model can be used 
to estimate the number of active flows. The model is accurate 
enough to capture the effect of non-responsive flows in the 
estimation. We, then, proposed a modification of SRED, called 
HaTCh, that uses hashing and a two-level caching mechanism to 
alleviate the drawbacks of SRED. A preliminary instance of the 
proposed scheme was presented to demonstrate its effectiveness. 
Also, we conducted extensive simulations for an in-depth 
performance analysis of both the schemes. The proposed HaTCh 
scheme improves estimation accuracy and stability compared to 
that achieved by SRED. It also improves the robustness of the 
estimation by effectively isolating the non-responsive flows to 
avoid cache contamination. 

The proposed scheme is practically viable since the two caches 
can be implemented using standard hardware. A standard 
configuration of HaTCh could be the following: (i) L2 cache size 
= the target number of flows supported by the link (N); (ii) L1 
cache size = 10% of L2 cache size or the target number of non-
responsive flows; (iii) r = 0.01, and (iv) k is set as large as possible 
based on the implementation complexity. 

Our future work will involve development of a complete AQM 
mechanism and security measure based on the HaTCh concept. 
Also, we plan to develop a self-tuning strategy for HaTCh, which 
will include consideration of other system and design parameters. 

References 

[1] Architecture for IP Flow Information Export, Internet Draft, Available 
from http://www.ietf.org/internet-drafts/draft-ietf-ipf ix-architecture. 

[2] C. Estan and G. Varghese, “New Directions in Traffic Measurement 
and Accounting,” Proc. ACM SIGCOMM, Aug. 2002, pp. 323-336. 

[3] A. Kumar, J. Xu, J. Wang, O. Spatschek, and L. Li, “Space-Code 
Bloom Filter for Efficient Per-Flow Traffic Measurement,” Proc. 
IEEE INFOCOM, Mar. 2004, pp. 1762-1773. 

[4] T. Ott, T. Lakshman, and L. Wong, “SRED: Stabilized RED,” Proc. 
IEEE INFOCOM, Mar. 1999, pp. 1346-1355. 

[5] S. Yi, X. Deng, G. Kesidis, and C.R. Das, “A Dynamic Quarantine 
Scheme for Controlling Unresponsive TCP Flows,” Pennsylvania 



204   Sungwon Yi et al. ETRI Journal, Volume 30, Number 2, April 2008 

State University Technical Report CSE04-004, Feb. 2004. 
[6] S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated Worm 

Fingerprinting,” Proc. the 6th ACM/USENIX Symp. Operating 
System Design and Implementation (OSDI), Dec. 2004, pp. 45-60 

[7] C. Estan and G. Varghese, “Bitmap Algorithms for Counting Active 
Flows on High-Speed Links,” Proc. ACM Internet Measurement 
Conf., Oct. 2003, pp. 153-166. 

[8] V. Paxson, “End-to-End Routing Behavior in the Internet,” 
IEEE/ACM Trans. Networking, vol. 5, no. 5, Oct. 1997, pp. 601-615. 

[9] Network simulator (NS), on-line document, available from 
http://www.isi.edu/nsnam.  

[10] M. Chan and M. Hamdi, “An Active Queue Management Scheme 
Based on a Capture-Recapture Model,” IEEE Journal on Selected 
Areas in Comm., vol. 21, no. 5, May 2003, pp. 572-583. 

[11] A. Kuzmanovic and E.W. Knightly, “Low-Rate TCP-Targeted Denial 
of Service Attacks: The Shrew vs. the Mice and Elephants,” Proc. 
ACM SIGCOMM, Aug. 2003, pp. 75-86. 

[12] A. Tang, J. Wang, and S.H. Low, “Understanding Choke,” proc. 
INFOCOM, San Francisco, Apr. 2003, pp. 114-124. 

[13] W.R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols, Addison 
Wesley. 

[14] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective 
Acknowledgment Option,” Internet draft, work in progress, 1996. 

[15] L.S. Brakmo, S.W. O`Malley, and L.L. Peterson, “TCP Vegas: New 
Techniques for Congestion Detection and Avoidance,” Proc. ACM 
SIGCOMM, Oct. 1994, pp. 24-35. 

[16] V. Jacobson, “Congestion Avoidance and Control,” Proc. ACM 
SIGCOMM, Aug. 1988, pp. 314-329. 

[17] D. Lin and R. Morris, “Dynamics of Random Early Detection,” Proc. 
ACM SIGCOMM, Sept. 1997, pp. 127-137. 

[18] R. Mahajan and S. Floyd, “RED-PD: Controlling High Bandwidth 
Flows at the Congested Router,” the 9th Int’l Conf. Network 
Protocols, Nov. 2001, pp. 192-201. 

[19] W. Feng, D.D. Kandlur, S. Debanjan, and K. Shin, “Stochastic Fair 
Blue: A Queue Management Algorithm for Enforcing Fairness,” 
Proc. IEEE INFOCOM, Apr. 2002, pp. 1520-1529. 

[20] P. McKenney, “Stochastic Fairness Queueing,” Proc. IEEE 
INFOCOM, Mar. 1990, pp. 733-740. 

 
Sungwon Yi received the MS and PhD degrees in 
computer science and engineering, from 
Pennsylvania State University in 2004 and 2005, 
respectively. Before studying at Pennsylvania State 
University, he worked for LG-CNS as a system 
engineer. Since 2005, he has been with ETRI, 
Korea, where he is a researcher in the Information 

Security Research Division. His research interests include the areas of 
computer networks, with emphasis on Internet congestion control and QoS, 
network security, and mobile computing.   
 

Xidong Deng received her BS degree from the 
University of Science and Technology of China, 
Hefei, China, in 1999; and her PhD degree in 
computer science and engineering from 
Pennsylvania State University in 2004. She joined 
St. Cloud State University, Minnesota, in 2004 as 
an assistant professor with a joint appointment with 

the Department of Computer Science and the Department of Electrical and 
Computer Engineering. Her teaching and research interests are computer 
networks, distributed systems, and performance evaluation. Her recent 
work has focused on Internet QoS, resource management and congestion 
control, and network security. She is a member of IEEE and ACM. 
 

George Kesidis received his MS and PhD degrees 
in EECS from the University of California, 
Berkeley, in 1990 and 1992, respectively. He was a 
professor in the E&CE department of the 
University of Waterloo, Canada, from 1992 to 
2000. Since April 2000, he has taught in both the 
CS&E and EE departments of Pennsylvania State 

University. His research experience spans several areas of 
computer/communication networking, including security, incentive 
engineering, efficient simulation, and traffic engineering. He served as TPC 
co-chair of IEEE INFOCOM 2007 and is currently an associated editor for 
ACM TOMACS and IEEE Communications Surveys and Tutorials. He is 
a senior member of the IEEE.  

 
Chita R. Das received the MSc degree in electrical 
engineering from the Regional Engineering 
College, Rourkela, India, in 1981; and the PhD 
degree in computer science from the Center for 
Advanced Computer Studies, University of 
Louisiana, Lafayette, in 1986. Since 1986, he has 
been with Pennsylvania State University, where he 

is currently a professor with the Department of Computer Science and 
Engineering. His main areas of interest are parallel and distributed computer 
architectures, cluster computing, mobile computing, Internet QoS, 
multimedia systems, performance evaluation, and fault-tolerant computing. 
He has served on the editorial boards of the IEEE Transactions on 
Computers and IEEE Transactions on Parallel and Distributed Systems. Dr. 
Das is a Fellow of the IEEE and a member of the ACM.  
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


