• Title/Summary/Keyword: SRC-3

Search Result 208, Processing Time 0.026 seconds

Roles of Steroid Receptor Coactivator-3 and TTF-1 in Lung Development and Lung Cancer (폐의 분화와 폐암에서 SRC-3와 TTF-I의 역할)

  • Kwak, Inseok
    • Journal of Life Science
    • /
    • v.25 no.12
    • /
    • pp.1439-1444
    • /
    • 2015
  • Steroid receptor coactivators (SRC) are transcriptional coactivators. Among SRCs, SRC-3 is the most studied in relation to different types of tumors. However, the role of SRC-3 in early lung development and lung cancer has not been well studied. The expression profiles of SRC-3 showed that SRC-3 contributed to bronchial and alveolar development in embryonic lung development. SRC-3 was strongly expressed in Clara cells and type II alveolar cells during fetal lung development (E17.5- E18.5), and SRC-3 was expressed in both cell types in the adult lung. TTF-1 was expressed in the lungs of heterozygote SRC-3 mice and Clara cell-specific-CCSP-TAg tumor mice, along with SRC-3 expression. The expression of TTF-1 was localized at transformed Clara cells and multifocal adenocarcinomas in lung cancer mice. However, SRC-3 was not expressed in the multifocal adenocarcinomas, suggesting that SRC-3 might not be involved in the invasiveness of lung cancer. Cotransfection of TTF-1 in Clara cell-specific mtCC cell lines resulted in significant activation of CCSP expression. However, cotransfection of SRC-3 had no significant effects on transient transfection. These in vivo and in vitro results suggest that SRC-3 does not play a significant role in lung tumor progression. In conclusion, SRC-3 is involved in bronchial and alveolar development in fetal and adult lungs, but it does not play an important role in the progression of Clara cell-derived lung cancer.

Steroid Receptor Coactivator-3 Promotes Bladder Cancer Through Upregulation of CXCR4

  • Zhang, Yu;Wang, Ji-Hong;Liu, Bin;Qu, Ping-Bao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3847-3850
    • /
    • 2013
  • The three homologous members of the p160 SRC family (SRC-1, SRC-2 and SRC-3) mediate the transcriptional functions of nuclear receptors and other transcription factors, and are the most studied of all the transcriptional co-activators. Recent work has indicated that the SRC-3 gene is subject to amplification and overexpression in various human cancers. Some of the molecular mechanisms responsible for SRC overexpression, along with the mechanisms by which SRC-3 promotes breast and prostate cancer cell proliferation and survival, have been identified. However, the function of SRC-3 in bladder cancer remains poorly understood. In the present study, our results indicate that overexpression of SRC-3 promotes bladder cancer cell proliferation whereas knockdown of SRC-3 results in inhibition. At the molecular level, we further established that CXCR4 is a transcriptional target of SRC-3. Therefore, our study first identified that SRC-3 plays a critical role in the bladder cancer, which may be a target beneficial for its prevention and treatment.

Strength Prediction of Spatially Reinforced Composites (공간적으로 보강된 복합재료의 강도예측)

  • 유재석;장영순;이상의;김천곤
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.39-46
    • /
    • 2004
  • In this study, the strength of spatially reinforced composites (SRC) are predicted by using stiffness reduction for each structural element composed of a rod stiffness in each direction and a matrix stiffness proportional to its rod volume fraction. Maximum failure strain criteria is applied to rod failure, and modified Tsai-Wu failure criteria to matrix failure. The material properties composed of the tensile failure strain of a rod, the compressive failure strain of 3D SRC, the tensile and compressive strength of the 3D SRC in the $45^{\cir}$ rotated direction from a rod and the shear strength of the 3D SRC are measured to predict the SRC strength. The strength distributions of the 3D/4D SRC in rod and off-rod direction have the largest and the smallest values, respectively. A variable load step is selected to increase an efficiency of strength distribution calculation. Uniform load step is applied when a load history is needed. The results of compressive strength from analysis and experiment show the 18 % difference though the initial slop is coincident with each other.

Thermo-Elastic Analysis of the Spatially Reinforced Composite Nozzle (다방향으로 입체 보강된 복합재 노즐의 열탄성해석)

  • 유재석;김광수;이상의;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.100-105
    • /
    • 2002
  • This paper predicts the material properties of spatially reinforced composites (SRC) and analyzes the thermo-elastic behavior of a kick motor nozzle manufactured from that material. To find the appropriate SRC structure for the nozzle throat that satisfies given design conditions, the equivalent material properties of the SRC are predicted using the superposition method for those of rod and matrix. Studied are the elastic behavior, temperature distribution, and thermo-elastic behavior of a kick motor nozzle composed of carbon/carbon SRC as a throat part. The elastic deformation of the nozzle composed of 3D carbon/carbon SRC shows asymmetry in a circumferential direction. However, 4D carbon/carbon SRC nozzle shows uniform deformation in the circumferential direction. Stress concentration in connecting parts of the kick motor nozzle is ultimately high due to the high temperature gradient in each connecting part. The thermo-elastic deformations of both the 3D and the 4D SRC nozzles are uniform in the circumferential direction due to the isotropy of CTE of each SRC. The deformation of the 3D SRC nozzle is a slightly smaller than that of the 4D SRC nozzle in the nozzle throat, which is favorably effective on rocket thrust. The circumferential stress is the most critical component of the kick motor nozzle. The 4D SRC nozzle having 1,1,1,1.7 diameters in each direction has the smallest circumferential stress among several SRC nozzles.

  • PDF

Roles of Src-family kinase isoforms, Lyn, Fyn, Fgr, and c-Src on degranulation in RBL-2H3 mast cells (비만세포의 탈과립에 대한 다양한 Src-family kinase의 역할)

  • Lee, Jun-Ho;Mun, Se-Hwan;Ko, Na-Young;Kim, Jie-Wan;Kim, Do-Kyun;Kim, Joo-Dong;Her, Erk;Choi, Wahn-Soo
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.350-355
    • /
    • 2007
  • The rat RBL-2H3 mast cells contain various Src-family kinases. Previous reports with this cell line indicated that Lyn activation is an important initial signaling for the activation of the cells. However, the role and location of other Src-family kinase isoforms which are expressed in the cells are not clear. In this study, we now show that isoforms of Src-family kinases, Lyn, fyn, Fgr, c-Src, and Yes are differentially expressed and located differently in the cells as indicated by RT-PCR, immunoblotting analysis, and confocal microscopy. Lyn and Fgr were located on plasma membrane but on the other hand c-Src and Yes were located on intracellular organelle. All of Src-family kinases were cloned and overexpressed for investigating the roles of the isoforms. Overexpression of Fyn and Fgr, not Lyn and c-Src, stimulated Ag-induced degranulation in the cells. Our findings strongly suggest for the first time that each of Src-family kinase isoform can regulate differentially $Fc{\varepsilon}RI$-mediated signaling in RBL-2H3 mast cells.

Seismic Performance Evaluation of SRC Composite Column using Direct Displacement Based Design Method (직접변위기반 설계법에 의한 SRC 합성기둥의 내진성능평가)

  • Jung, In-Kju;Park, Soon-Eung;Kim, Dong-Hyuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.3
    • /
    • pp.63-70
    • /
    • 2012
  • In this study, the displacement-based design concept, the performance by the existing reinforced concerte column and steel reinforced concrete composite column for SRC purchased the maximum design ground acceleration improvement compared to the performance design. SRC have several advantages such as strength enhancement and high ductility. H-beam or steel tubes were used for embedded elements of the SRC composite columns. SRC cross-section for the P-M diagram and analysis on the nominal bending monent SRC designed for composite columns for disparity estimation is presented to the displacement-based seismic design. Performance improvement of the performance-based design performance targets for the design seismic displacement and design criteria for the direct displacement-based design methods and to improve the seismic performance due to the displacement coefficient method is proposed to design. SRC compared with the RC column designed to improve the performance and displacement ductility ratio displacement results in the performance design results showed significantly improved performance.

Macrophage inhibitory cytokine-1 transactivates ErbB family receptors via the activation of Src in SK-BR-3 human breast cancer cells

  • Park, Yun-Jung;Lee, Han-Soo;Lee, Jeong-Hyung
    • BMB Reports
    • /
    • v.43 no.2
    • /
    • pp.91-96
    • /
    • 2010
  • The function of macrophage inhibitory cytokine-1 (MIC-1) in cancer remains controversial, and its signaling pathways remain poorly understood. In this study, we demonstrate that MIC-1 induces the transactivation of EGFR, ErbB2, and ErbB3 through the activation of c-Src in SK-BR-3 breast cells. MIC-1 induced significant phosphorylation of EGFR at Tyr845, ErbB2 at Tyr877, and ErbB3 at Tyr1289 as well as Akt and p38, Erk1/2, and JNK mitogen-activated protein kinases (MAPKs). Treatment of SK-BR-3 cells with MIC-1 increased the phosphorylation level of Src at Tyr416, and induced invasiveness of those cells. Inhibition of c-Src activity resulted in the complete abolition of MIC-1-induced phosphorylation of the EGFR, ErbB2, and ErbB3, as well as invasiveness and matrix metalloproteinase (MMP)-9 expression in SK-BR-3 cells. Collectively, these results show that MIC-1 may participate in the malignant progression of certain cancer cells through the activation of c-Src, which in turn may transactivate ErbB-family receptors.

Comparative Analysis of Src Activity in Plasma Membrane Subdomains via Genetically Encoded FRET Biosensors (유전적으로 암호화된 FRET 바이오센서를 통한 세포막 하위 도메인의 Src 활성 비교 분석)

  • Gyuho Choi;Yoon-Kwan Jang;Jung-Soo Suh;Heonsu Kim;Sanghyun Ahn;Tae-Jin Kim
    • Journal of Life Science
    • /
    • v.33 no.2
    • /
    • pp.191-198
    • /
    • 2023
  • As a member of the focal adhesion complex of the plasma membrane, Src is a nonreceptor tyrosine kinase that controls cell adhesion and motility. However, how Src activity is regulated in the plasma membrane microdomain in response to components of the extracellular matrix (ECM) remains unclear. This study compared and investigated the activity of Src in response to three representative ECM proteins: collagen type 1, fibronectin, and laminin. Genetically encoded FRET-based Src biosensors for plasma membrane subdomains were used. FRET-based biosensors allow the real-time analysis of protein activity in living cells based on their high spatiotemporal resolution. The results showed that Src activity was maintained at a high level under all ECM conditions of the lipid raft, and there was no significant difference between the ECM conditions. In contrast, Src activity was maintained at a low level in the non-lipid raft membrane. In addition, the Src activity of lipid rafts remained significantly higher than that of non-lipid raft regions under the same ECM conditions. In conclusion, this study demonstrates that Src activity can be controlled differently by lipid rafts and non-lipid raft microdomains.

Study on Low Temperature Tolerant Methane-Producing Bacteria for the Treatment of Agricultural and Livestock Wastes (농축산(農畜産) 폐기물(廢棄物) 처리(處理)를 위(爲)한 저온내성(低溫耐性) 메탄 생성균(生成菌)의 특성(特性)에 관(關)한 연구(硏究) II. 저온내성(低溫耐性) Clostridia 의 분리(分離))

  • Jung, Kwang-Yong;Kim, Jai-Joung;Daniels, Lacy
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.3
    • /
    • pp.311-320
    • /
    • 1994
  • This study was conducted to investigate the biochemical properties of isolated bacteria, low temperature tolerant methane-producing clostridia which were selected for using them as inoculum to anaerobic fermentation of agricultural and livestock wastes at low temperature. The results were; 1. Low temperature tolerant methane-producing clostridia were isolated from the samples which showed the high methanogenesis rate by enrichment culture at low temperature in cellulose medium. These clostridia, Clostridium botulinum SRC-64, Clostridium scatologens SRC-91 and Clostridium tyrobutyricum SRC-100, were isolated from swampy sediment at latitude $56.9^{\circ}N$, lake sediment IV at latitude $55.0^{\circ}N$, and tidal land soil II at latitude $37.0^{\circ}N$, respectively. The optimum growth temperature for these isolates was $37^{\circ}C$ and the minimum, around $10^{\circ}C$. They all had detectable amount of $F_{420}$, specific coenzyme of methanogens. 2. As anaerobic fermentation products of glucose SRC-64 produced $H_2$, acetic, isovaleric and caproic acid, SRC-91 produced $H_2$, propionic, butyric, valeric, and caproic acid, and SRC-100 produced only acetic and propionic acid. The isolates were produced $CH_4$ ranged from 2.6 to 8.68 n moles/ml for 2 days at $13^{\circ}C$.

  • PDF

An experimental and numerical study on long-term deformation of SRC columns

  • An, Gyeong-Hee;Seo, Jun-Ki;Cha, Sang-Lyul;Kim, Jin-Keun
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.261-267
    • /
    • 2018
  • Long-term deformation of a steel-reinforced concrete (SRC) column is different from that of a reinforced concrete (RC) column due to the different moisture distribution. Wide-flange steel in an SRC column obstructs diffusion and makes long-term deformation slower. Previous studies analyzed the characteristics of long-term deformation of SRC columns. In this study, an additional experiment is conducted to more precisely investigate the effect of wide-flange steel on the long-term deformation of SRC columns. Long-term deformation, especially creep of SRC columns with various types of wide-flange steel, is tested. Wide-flange steel for the experiment is made of thin acrylic panels that can block diffusion but does not have strength, because the main purpose of this study is to exclusively demonstrate the long-term deformation of concrete caused by moisture diffusion, not by the reinforcement ratio. Experimental results show that the long-term deformation of a SRC column develops slower than that in a RC column, and it is slower as the wide-flange steel hinders diffusion more. These experimental results can be used for analytical prediction of long-term deformation of various SRC columns. An example of the analytical prediction is provided. According to the experimental and analytical results, it is clear that a new prediction model for long-term deformation of SRC columns should be developed in further studies.