• 제목/요약/키워드: SRC beam-columns

검색결과 16건 처리시간 0.024초

SRC 기둥에 대한 정적실험 (Static Tests on SRC Columns)

  • 정인근;민진;심창수;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.97-100
    • /
    • 2004
  • Steel encased composite columns are widely used due to their excellent structural performance in terms of stiffness, strength, and ductility. However, experimental studies were usually for the columns having higher steel ratio $(3-4\%)$. There are two different design concepts for SRC columns. ACI-318 specifies the design strength of the column using the same concept of reinforced concrete columns. AISC-LRFD specifies the P-M diagram using the concept of steel column. In this paper, SRC columns have the steel ratio of $0.53\%\;and\;1.06\%$. From the test results, ACI-318 specifications showed better evaluation of SRC columns having low steel ratio. H beam and steel tube partially filled with concrete were embedded in concrete. Flexural tests showed considerably high ductility.

  • PDF

Cyclic test for solid steel reinforced concrete frames with special-shaped columns

  • Liu, Zu Q.;Xue, Jian Y.;Zhao, Hong T.;Gao, Liang
    • Earthquakes and Structures
    • /
    • 제7권3호
    • /
    • pp.317-331
    • /
    • 2014
  • An experimental study was performed to investigate the seismic performance of solid steel reinforced concrete (SRC) frames with special-shaped columns that are composed of SRC special-shaped columns and reinforced concrete beams. For this purpose, two models of two-bay and three-story frame, including an edge frame and a middle frame, were designed and tested. The failure process and patterns were observed. The mechanical behaviors such as load-displacement hysteretic loops and skeleton curves, load bearing capacity, drift ratio, ductility, energy dissipation and stiffness degradation of test specimens were analyzed. Test results show that the failure mechanism of solid SRC frame with special-shaped columns is the beam-hinged mechanism, satisfying the seismic design principle of "strong column and weak beam". The hysteretic loops are plump, the ductility is good and the capacity of energy dissipation is strong, indicating that the solid SRC frame with special-shaped columns has excellent seismic performance, which is better than that of the lattice SRC frame with special-shaped columns. The ultimate elastic-plastic drift ratio is larger than the limit value specified by seismic code, showing the high capacity of collapse resistance. Compared with the edge frame, the middle frame has higher carrying capacity and stronger energy dissipation, but the ductility and speed of stiffness degradation are similar. All these can be helpful to the designation of solid SRC frame with special-shaped columns.

Experimental study on shear capacity of SRC joints with different arrangement and sizes of cross-shaped steel in column

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.267-287
    • /
    • 2016
  • The seismic performance of the ordinary steel reinforced concrete (SRC) columns has no significant improvement compared to the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type shaped steel were put forward on this background, and they were named as enlarging cross-shaped steel and diagonal cross-shaped steel for short. The seismic behavior and carrying capacity of new-type SRC columns have been researched theoretically and experimentally, while the shear behavior remains unclear when the new-type columns are joined onto SRC beams. This paper presents an experimental study to investigate the shear capacity of new-type SRC joints. For this purpose, four new-type and one ordinary SRC joints under low reversed cyclic loading were tested, and the failure patterns, load-displacement hysteretic curves, joint shear deformation and steel strain were also observed. The ultimate shear force of joint specimens was calculated according to the beam-end counterforce, and effects of steel shape, load angel and structural measures on shear capacity of joints were analyzed. The test results indicate that: (1) the new-type SRC joints display shear failure pattern and has higher shear capacity than the ordinary one; (2) the oblique specimens have good bearing capacity if designed reasonably; and (3) the two proposed construction measures have little effect on the shear capacity of SRC joints embedded with diagonal cross-shaped steel. Based on the mechanism observed from the test, the formulas for calculating ultimate shear capacity considering the main factors (steel web, stirrup and axial compression ratio) were derived, and the calculated results agreed well with the experimental and simulated data.

SRC 합성교각의 비탄성 거동 (Inelastic Behavior of the SRC Column)

  • 정인근;민진;심창수;정영수
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.300-307
    • /
    • 2005
  • Steel Reinforced Concrete (SRC) composite column has several advantage such as excellent durability, rapid construction, reduction of column section. Due to these aspect, applications of SRC columns to bridge piers are continuously increasing. For the design of relatively large SRC columns for bridge piers, it is necessary to check the current design provisions which were based on small section having higher steel ratio. In this study, seven concrete encased composite columns were fabricated and static tests were performed. Embedded steel members were a H-shape rolled beam and a partially filled steel tube. Based on the test results, the ultimate strength according to section details and local behavior were estimated. For the analysis of inelastic behavior of the SRC column, the cracked section stiffness of the columns was evaluated and compared with calculations. The stiffness of the cracked section showed that 25% of the initial value and this stiffness reduction occurred at 85% of the ultimate load in the experiments.

  • PDF

Experimental study on simplified steel reinforced concrete beam-column joints in construction technology

  • Teraoka, Masaru;Morita, Koji;Sasaki, Satoshi;Katsura, Daisuke
    • Steel and Composite Structures
    • /
    • 제1권3호
    • /
    • pp.295-312
    • /
    • 2001
  • The purpose of this paper is to propose a new type of steel reinforced concrete (SRC) beam-column joints and to examine the structural performance of the proposed joints, which simplify the construction procedure of steel fabrication, welding works, concrete casting and joint strengthening. In the proposed beam-column joints, the steel element of columns forms continuously built-in crossing of H-sections (${\Box}$), with adjacent flanges of column being connected by horizontal stiffeners in a joint at the level of the beam flanges. In addition, simplified lateral reinforcement (${\Box}$) is adopted in a joint to confine the longitudinal reinforcing bars in columns. Experimental and analytical studies have been carried out to estimate the structural performance of the proposed joints. Twelve cruciform specimens and seven SRC beam-column subassemblage specimens were prepared and tested. The following can be concluded from this study: (1) SRC subassemblages with the proposed beam-column joints show adequate seismic performances which are superior to the demand of the current code; (2) The yield and ultimate strength capacities of the beam-to-column connections can be estimated by analysis based on the yield line theory; (3) The skeleton curves and the ultimate shear capacities of the beam-column joint panel are predicted with a fair degree of accuracy by considering a simple stress transfer mechanism.

Seismic behavior of steel reinforced concrete (SRC) joints with new-type section steel under cyclic loading

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1561-1580
    • /
    • 2015
  • No significant improvement has been observed on the seismic performance of the ordinary steel reinforced concrete (SRC) columns compared with the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type section steel were put forward on this background: a cross-shaped steel whose flanges are in contact with concrete cover by extending the geometry of webs, and a rotated cross-shaped steel whose webs coincide with diagonal line of the column's section. The advantages of new-type SRC columns have been proved theoretically and experimentally, while construction measures and seismic behavior remain unclear when the new-type columns are joined onto SRC beams. Seismic behavior of SRC joints with new-type section steel were experimentally investigated by testing 5 specimens subjected to low reversed cyclic loading, mainly including the failure patterns, hysteretic loops, skeleton curves, energy dissipation capacity, strength and stiffness degradation and ductility. Effects of steel shape, load angel and construction measures on seismic behavior of joints were also analyzed. The test results indicate that the new-type joints display shear failure pattern under seismic loading, and steel and concrete of core region could bear larger load and tend to be stable although the specimens are close to failure. The hysteretic curves of new-type joints are plumper whose equivalent viscous damping coefficients and ductility factors are over 0.38 and 3.2 respectively, and this illustrates the energy dissipation capacity and deformation ability of new-type SRC joints are better than that of ordinary ones with shear failure. Bearing capacity and ductility of new-type joints are superior when the diagonal cross-shaped steel is contained and beams are orthogonal to columns, and the two construction measures proposed have little effect on the seismic behavior of joints.

매립형 SRC 기둥재의 변형성능에 대한 축력의 영향 (Effects of Axial Force on Deformation Capacity of Steel Encased Reinforced Concrete Beam-Columns)

  • 정진안;양일승;최성모
    • 한국강구조학회 논문집
    • /
    • 제15권3호
    • /
    • pp.251-259
    • /
    • 2003
  • 본 논문은 매립형 SRC기둥의 축력과 변형능력과의 관계를 찾아내기 위하여 해석적인 연구를 수행하였다. 해석 모델은 캔틸레버기둥으로 한정하였으며 SRC 기둥의 비탄성 거동에 영향을 미치는 변수들인 철골비, 매립철골형상과 전단스팬과 춤과의 비에 대하여 검토하였다. 일정회전각하에 축력과 반복수평력을 받는 SRC기둥의 안정적 거동을 보장하기 위한 최대한계축력이 있다는 것을 해석결과들은 보여 주고 있다. 반복 횡하중을 받는 기둥이 저항할 수 있는 최대축력은 소요회전각을 보장하는 안정한계축력으로서 정의된다. 해석결과에 따르면 안정한 계축력비는 강재의 강도가 증가함에 따라 콘크리트의 강도가 감소함에 따라 증가하는 것으로 나타났다. 또한 I형 단면이 매립형 철골로 사용될때 철골 단면적이 증가함에 따라 안정한계 축력비는 증가하며, 십자형 단면이 사용되는 경우에는 단면적에 의한 영향이 거의 없었다.

Shear strength and shear behaviour of H-beam and cruciform-shaped steel sections for concrete-encased composite columns

  • Keng-Ta Lin;Cheng-Cheng Chen
    • Steel and Composite Structures
    • /
    • 제47권3호
    • /
    • pp.423-436
    • /
    • 2023
  • In this research, we tested 10 simply supported concrete-encased composite columns under monotonic eccentric loads and investigated their shear behaviour. The specimens tested were two reinforced concrete specimens, three steel-reinforced concrete (SRC) specimens with an H-shaped steel section (also called a beam section), and five SRC specimens with a cruciform-shaped steel section (also called a column section). The experimental variables included the transverse steel shape's depth and the longitudinal steel flange's width. Experimental observations indicated the following. (1) The ultimate load-carrying capacity was controlled by web compression failure, defined as a situation where the concrete within the diagonal strut's upper end was crushed. (2) The composite effect was strong before the crushing of the concrete outside the steel shape. (3) We adjusted the softened strut-and-tie SRC (SST-SRC) model to yield more accurate strength predictions than those obtained using the strength superposition method. (4) The MSST-SRC model can more reasonably predict shear strength at an initial concrete softening load point. The rationality of the MSST-SRC model was inferred by experimentally observing shear behaviour, including concrete crushing and the point of sharp variation in the shear strain.

37층 초고층주상복합건물 SRC기둥의 기둥축소량 현장계측 및 보정법 (Field Measurement and Compensation Method of Column Shortening for SRC Columns in 37-story Residential Building)

  • 송화철;도근영;조훈희
    • 한국건축시공학회지
    • /
    • 제5권4호
    • /
    • pp.145-152
    • /
    • 2005
  • Long-term axial shortening of the vertical elements of tail buildings results in differential movements between two elements and may lead to the additional moments of connection beam and slab elements, and other secondary effects, such as cracks of partitions or curtain walls. Accurate prediction of time-dependent column shortening is essential for tall buildings from both strength and serviceability aspects. The compensation method is different from reinforced concrete and SRC(Steel Reinforced Concrete) members. The SRC columns are usually compensated according to total differential shortening between two vertical elements. In this study, column shortenings of 37-story W building under construction are predicted and compensated. The SRC column shortenings are compared with the actual column shortening by field measurement and the column shortenings are reanalysed and recompensated.

Strength Evaluation of Slender Steel Reinforced Concrete Beam-Columns

  • Chung, Jinan;Choi, Seongmo;Kim, Dongkyu
    • Architectural research
    • /
    • 제3권1호
    • /
    • pp.61-70
    • /
    • 2001
  • The paper is intended to propose design strength of slender steel reinforced beam-columns by using the modified superposed method. The design of composite members is carried out by a superposed strength method in AIJ (Architectural Institute of Japan) design method. The bearing capacities of the steel part and the concrete part have to be determined separately and then added to a combined capacity. Authors have proposed a new superposed method in a modified form for the slender composite beam-columns and reinforced column. The modified superposed method is adopted for the slender steel reinforced beam-columns. Validation of the modified superposed method is undertaken by comparison with analytical results calculated assuming a sine curve deflected shape of the beam-columns, and with the test results conducted in Japan.

  • PDF