• Title/Summary/Keyword: SQUID sensor

Search Result 40, Processing Time 0.036 seconds

Emulator Circuit for a Flux Locked Loop for Detection of Magnetocardiography Signal (심자도 신호 검출을 위한 Flux Locked Loop (FLL) Emulation 회로)

  • 안창범;이동훈;김인기;장경섭;김기태;정동현;최중필
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2749-2752
    • /
    • 2003
  • Magnetocardiography is a very weak biomagnetic field generated from the heart. Since the magnitude of the biomagnetic field is in the order of a few pico Tesla, it is measured with a superconducting quantum interference device (SQUID). SQUID is a transducer converting magnetic flux to voltage, however, its range of linear conversion is very restricted. In order to overcome the narrow dynamic range. a flux locked loop is used to feedback the output field with opposite polarity to the input field so that the total Held becomes zero. This prevents the operating point of the SQUID from moving too far away from the null point thereby escape from the linear region. In this paper, an emulator for the SQUID sensor and feedback coil is proposed. Magnetic courting between the original field and the generated field by the feedback coil is emulated by electronic circuits. By using the emulator, FLL circuits are analyzed and optimized without SQUID sensors. The emulator may be used as a test signal for multi-channel gain calibration and system maintenance.

  • PDF

The latest trend in magnetocardiogram measurement system technology

  • Lee, Y.H.;Kwon, H.;Kim, J.M.;Yu, K.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.4
    • /
    • pp.1-5
    • /
    • 2020
  • Heart consists of myocardium cells and the electrophysiological activity of the cells generate magnetic fields. By measuring this magnetic field, magnetocardiogram (MCG), functional diagnosis of the heart diseases is possible. Since the strength of the MCG signals is weak, typically in the range of 1-10 pT, we need sensitive magnetic sensors. Conventionally, superconducting quantum interference devices (SQUID)s were used for the detection of MCG signals due to its superior sensitivity to other magnetic sensors. However, drawback of the SQUID is the need for regular refill of a cryogenic liquid, typically liquid helium for cooling low-temperature SQUIDs. Efforts to eliminate the need for the refill in the SQUID system have been done by using cryocooler-based conduction cooling or use of non-cryogenic sensors, or room-temperature sensors. Each sensor has advantage and disadvantage, in terms of magnetic field sensitivity and complexity of the system, and we review the recent trend of MCG technology.

Development of a HTS SQUID gradiometer system for the measurement of very weak magnetic field in an unshielded environment (비자기차폐환경에서 미세 자기장 측정을 위한 고온초전도 gradiometer 시스템의 개발)

  • Kim, In-Seon;Kim, Jin-Mok;Park, Yong-Ki
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.151-154
    • /
    • 2000
  • We have developed a YBCO SQUID gradiometer system for the measurement of a very weak magnetic field in an unshielded environment. The system consists of a SQUID gradiometer sensor, low noise pre-amp, and FLL(fluxlocked loop) control electronics. The gradiometer sensors have been fabricated on STO bicrystal substrates, and exhibit a magnetic noise of 300 fT/${\surd}$ Hz/cm at 100 Hz. The overall magnetic field noise of the SQUID gradiometer system was about 10 pT/${\surd}$ Hz/cm at 10 Hz without any magnetic shield. The system demonstrated a high stability for a long time, and real-time measurement resolution ${\le}$ 100 pT/cm in the unshielded environments.

  • PDF

SQUID Systems for Magnetocardiographic Applications

  • Lee, Yong-Ho;Kim, Jin-Mok;Kwon, Hyuk-Chan;Yu, Kwon-Kyu;Kim, Ki-Woong;Park, Yong-Ki
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.2
    • /
    • pp.1-6
    • /
    • 2007
  • As very sensitive magnetic field sensors, superconducting quantum interference devices (SQUIDs) are used to measure magnetic field signals from the human heart. By analyzing these cardiomagnetic signals, functional diagnoses of heart can be done. In order to measure weak biomagnetic signals, we need a multichannel SQUID array with sensor coverage large enough to cover the whole heart to enable the measurement in a single position setting. In this paper, we review the recent development of SQUID systems for measuring cardiomagnetic fields, with special emphasis on SQUID types.

First-order Wire-wound SQUID Gradiometer System Having Compact Superconductive Connection Structure between SQUID and Pickup Coil (SQUID와 검출코일의 초전도 결합방식이 개선된 1차 권선형 미분계 시스템)

  • Lee, Y.H.;Yu, K.K.;Kim, J.M.;Kwon, H.;Kim, K.;Park, Y.K.
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.23-28
    • /
    • 2007
  • In order to have a superconductive connection between the wire-wound pickup coil and input coil, typically Nb terminal blocks with screw holes are used. Since this connection structure occupies large volume, large stray pickup area can be generated which can pickup external noise fields. Thus, SQUID and connection block are shielded inside a superconducting tube, and this SQUID module is located at some distance from the distal coil of the gradiometer to minimize the distortion or imbalance of uniform background field due to the superconducting module. To operate this conventional SQUID module, we need a higher liquid He level, resulting in shorter refill interval. To make the fabrication of gradiometers simpler and refill interval longer, we developed a novel method of connecting the pickup coil into the input coil. Gradiometer coil wound of 0.125-mm diameter NbTi wires were glued close to the input coil pads of SQUID. The superconductive connection was made using an ultrasonic bonding of annealed 0.025-mm diameter Nb wires, bonded directly on the surface of NbTi wires where insulation layer was stripped out. The reliability of the superconductive bonding was good enough to sustain several thermal cycling. The stray pickup area due to this connection structure is about $0.1\;mm^2$, much smaller than the typical stray pickup area using the conventional screw block method. By using this compact connection structure, the position of the SQUID sensor is only about 20-30 mm from the distal coil of the gradiometer. Based on this compact module, we fabricated a magnetocardiography system having 61 first-order axial gradiometers, and measured MCG signals. The gradiometers have a coil diameter of 20 mm, and the baseline is 70 mm. The 61 axial gradiometer bobbins were distributed in a hexagonal lattice structure with a sensor interval of 26 mm, measuring $dB_z/dz$ component of magnetocardiography signals.

  • PDF

Fabrication of a HTS SQUID Magnetometer for Magnetocardiogram (심자도 측정용 고온초전도 SQUID magnetometer의 제작)

  • Kim, In-Seon;Lee, Sang-Kil;Kim, Jin-Mok;Kwon, Hyuk-Chan;Lee, Yong-Ho;Park, Yon-Ki;Park, Jong-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.258-264
    • /
    • 1997
  • $YBa_{2}Cu_{3}O_{7}$ single layer dc SQUID magnetometers, prepared on $1\;cm^{2}\;SrTiO_{3}$ substrates, have been fabricated and characterized. Based on the analytical description, a SQUID magnetometer design having a 8.5 mm pickup coil with 2.6 mm linewidth, and a SQUID inductance Ls = 50 pH with $3\;{\mu}m$ Josephson junctions is presented. The devices showed a maximum modulation voltage depth of $65\;{\mu}V$ and a magnetic field noise of 0.6 pT /$\sqrt{Hz}$ at 1 Hz. Clear traces of human magnetocardiogram could be obtained with the SQUID magnetometer operating at 77 K.

  • PDF

Design of a 40 channel SQUID system (40채널 SQUID 시스템의 설계)

  • Lee, Y.H.;Kim, J.M.;Kwon, H.C.;Lim, C.M.;Lee, S.K.;Park, Y.K.;Park, J.C.;Lee, D.H.;Shin, J.K.;Ahn, C.B.;Park, M.S.;Hur, Y.;Hong, J.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.191-192
    • /
    • 1998
  • We report on the design of a low-noise 40 channel SQUID system for biomagnetism. We used low-noise SQUID sensor with the pickup coil integrated on the same wafer as the SQUID. The SQUID electronics were simplified by increasing the voltage output of the SQUID. The SQUID insert was designed to have low thermal load, minimizing the liquid helium loss. The digital signal processing provides versatile analysis tools and the software is based on the object-oriented programming. For the effective localization of the source location, solutions of the inverse problems based on the lead-field and the simulated anneal ins were studied.

  • PDF

Designs and Fabrications of High-TC SQUID Magnetometer for Measuring a Weak Signal without Magnetic Shielding (비자기 차폐환경에서 미세자기신호 측정을 위한 고온 초전도 SQUID 자력계의 설계 및 제작)

  • Yu, K.K.;Kim, I.S.;Park, Y.K.
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.110-113
    • /
    • 2004
  • We have designed and fabricated the YBCO single layer directly-coupled SQUID magnetometers for the purpose of magnetocardiography in a magnetically disturbed environment. The SQUID magnetometers were designed three different types of pickup coil such as solid type, PL type I and PL type II for further stable fluxed-locked-loop operation without magnetic shielding. Magnetometer was fabricated with a single layer YBCO thin film deposited on STO(100) bicrystal substrate with misorientation angle of $30^{\circ}$. We have achieved a magnetic field noise BN of 30 fT/$Hz^{1/2}$ at 100 Hz, and less than 70 fT/$Hz^{1/2}$ at 1 Hz. The PL type II SQUIDs have exhibited the most stable fluxed-locked-loop operation in a magnetically unshielded environment.