Browse > Article
http://dx.doi.org/10.9714/psac.2020.22.4.001

The latest trend in magnetocardiogram measurement system technology  

Lee, Y.H. (Quantum Magnetic Measurement Team, Korea Research Institute of Standards and Science)
Kwon, H. (Quantum Magnetic Measurement Team, Korea Research Institute of Standards and Science)
Kim, J.M. (Quantum Magnetic Measurement Team, Korea Research Institute of Standards and Science)
Yu, K.K. (Quantum Magnetic Measurement Team, Korea Research Institute of Standards and Science)
Publication Information
Progress in Superconductivity and Cryogenics / v.22, no.4, 2020 , pp. 1-5 More about this Journal
Abstract
Heart consists of myocardium cells and the electrophysiological activity of the cells generate magnetic fields. By measuring this magnetic field, magnetocardiogram (MCG), functional diagnosis of the heart diseases is possible. Since the strength of the MCG signals is weak, typically in the range of 1-10 pT, we need sensitive magnetic sensors. Conventionally, superconducting quantum interference devices (SQUID)s were used for the detection of MCG signals due to its superior sensitivity to other magnetic sensors. However, drawback of the SQUID is the need for regular refill of a cryogenic liquid, typically liquid helium for cooling low-temperature SQUIDs. Efforts to eliminate the need for the refill in the SQUID system have been done by using cryocooler-based conduction cooling or use of non-cryogenic sensors, or room-temperature sensors. Each sensor has advantage and disadvantage, in terms of magnetic field sensitivity and complexity of the system, and we review the recent trend of MCG technology.
Keywords
SQUID; magnetic field sensor; magnetocardiogram; pickup coil; magnetic noise; magnetic shielding;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Cohen, E. A. Edelsack, and J. E. Zimmerman, "Magnetocardiograms taken inside a shielded room with superconducting point-contact magnetometer," Appl. Phys. Lett., vol. 19, pp. 278, 1970.
2 H. Nowak, "Magnetism in Medicine," ed. W. Andra and H. Nowak, Berlin: Wiley, pp. 85-35, 1998.
3 I. Tavarozzi, S. Comani, C. Dell Gratta, G. L. Romani, S. Di Luzio, D. Brisinda, S. Gallina, M. Zimarino, R. Fenici, and R. De Caterina, "Magnetocardiography: current status and perspectives. Part I: Physical principles and instrumentation," Ital. Heart J., vol. 3, pp. 75-85, 2002.
4 R. Fenici, D. Brisinda, and A. M. Meloni, "Clinical application of magnetocardiography," Expert Rev. Mol. Diagn., vol. 5, pp. 291-313, 2005.   DOI
5 S. Yamada and I. Yamaguchi, "Magnetocardiograms in Clinical Medicine: Unique Information on Cardiac Ischemia, Arrhythmias, and Fetal Diagnosis," Internal Medicine, vol. 44, pp. 1-19, 2005.   DOI
6 E. S. Shin, Y. Y. Lam, A. Y. Her, J. Brachmann, F. Jung, and J. W. Park, "Incremental diagnostic value of combined quantitative and qualitativeparameters of magnetocardiography to detect coronary artery disease," Int. J. Cardiol., vol. 228, pp. 948-952, 2017.   DOI
7 Y. H. Lee, H. Kwon, J. M. Kim, K. Kim, K. K. Yu, and Y. K. Park, "Review of Magnetocardiography Technology based on SQUIDs," Prog. Supercond., vol. 13, no. 3, 2012.
8 S. Fujimoto, K. Kazami, Y. Takada, T. Yoshida, H. Ogata, and H. Kado, "Cooling of SQUIDs using a Gifford-McMahon cryocooler containing magnetic regenerative material to measure biomagnetism," Cryogenics, vol. 35, pp. 143-148, 1995.   DOI
9 K. K. Yu, Y. H. Lee, S. J. Lee, J. H. Shim, S. M. Hwang, J. M. Kim, H. Kwon, and K. Kim, "Closed-cycle cryocooled SQUID system with superconductive shield for biomagnetism," Supercond. Sci. Technol., vol. 27, Art. no. 105007, 2014.
10 Y. H. Lee, K. K. Yu, J. M. Kim, H. Kwon, K. Kim and Y. K. Park, "64-channel second-order axial gradiometer system based on DROS for magnetocardiogram in a thin shielded room," Physica C, vol. 468, pp. 1942-1945, 2008.   DOI
11 Y. H. Lee, K. K. Yu, J. M. Kim, H. Kwon and K. Kim, "A 64-channel MCG system having divided gradiometer array inside a low boil-off dewar," Supercond. Sci. Technol., vol. 22, pp. 1-7, 2009.
12 R. Tao, S. Zhang, X. Huang, M. Tao, J. Ma, S. Ma, C. Zhang,T. Zhang, F. Tang, J. Lu, C. Shen, and X. Xie, "Magnetocardiography-Based Ischemic Heart Disease Detection and Localization Using Machine Learning Methods," IEEE T. Biomed. Eng., vol. 66, no. 6, 2019.
13 G. Bison, N. Castagna, A. Hofer, P. Knowles, J.-L. Schenker, M. Kasprzak, H. Saudan, and A. Weis, "A room temperature 19-channel magnetic field mapping device for cardiac signals," Appl. Phys. Lett., vol. 95, pp. 173701, 2009.   DOI
14 Genetesis homepage: https://genetesis.com/
15 J. W. Mooney, "A Biomagnetic Field Mapping System for Detection of Heart Disease in a Clinical Environment," Doctoral Thesis, Univ. Leeds., 2018.
16 Creavo homepage: https://www.creavomedtech.com/
17 H. Karo, K. Shimoda, Y. Maeda, and I. Sasada, "The first 36 channel fluxgate-sensor-array for the MCG measurement," IEEJ T. Sensors and Micromachines, vol. 136, no. 6, pp. 224-228, 2016.   DOI
18 Y. Adachi, D. Oyama, Y. Terazono, T. Hayashi, T. Shibuya, and S. Kawabata, "Calibration of Room Temperature Magnetic Sensor Array for Biomagnetic Measurement," IEEE T. Magn., vol. 55, no. 7, pp. 5000506, 2019.
19 Y. Shirai, K. Hirao, T. Shibuya, S. Okawa, Y. Hasegawa, Y. Adachi, K. Sekihara, and S. Kawabata, "Magnetocardiography Using a Magnetoresistive Sensor Array," Heart J., vol. 60, no. 1, pp. 50-54, 2019.
20 Y. H. Lee, H. Kwon, K. K. Yu, J. M. Kim, S. K. Lee, M. Y. Kim, and K. Kim, "Low-noise magnetoencephalography system cooled by a continuously operating reliquefier," Supercond. Sci. Technol., vol. 30, Art. no. 084003, 2017.
21 Y. J. Kim, I. Savukov, and S. Newman, "Magnetocardiography with a 16-channel fiber-coupled single-cell Rb optically pumped magnetometer," Appl. Phys. Lett., vol. 114, pp. 143702, 2019.   DOI