• Title/Summary/Keyword: SPWM control

Search Result 49, Processing Time 0.026 seconds

Development And Application of Three-phase Inverter Output Wave Generator based on SPWM Control to Verify the Performance of LCL filters (LCL 필터의 성능 검증을 위한 SPWM 제어기반의 3상 인버터 출력 파형 발생 장치 개발 및 적용 연구)

  • Im, Dong-Kyun;Kang, Chang-Kyun;Ha, Won-Jin;Sandagdorj, Chuluunbaatar;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.841-852
    • /
    • 2022
  • In this paper, a 3-phase inverter output waveform generator based on SPWM control was developed to verify the performance of the LCL filter. In order to obtain a test signal for verifying the performance of the filter, first, a DSP-based 3-phase SPWM signal generation algorithm was developed, and then a three-phase voltage source inverter circuit was designed using three half-bridge gate drivers. Next, one LCL filter was experimentally fabricated to verify the effectiveness of the developed SPWM-based 3-phase inverter output waveform generator as a test signal generator, and a DSP-based performance verification system was experimentally constructed. Finally, by comparing the three-phase voltage waveform before and after the LCL filter obtained in the output control experiment with the given time ratio, the effectiveness of the SPWM-based 3-phase inverter output waveform generator was verified.

A Study on the D-Q Control based Output Voltage Control Algorithm and EMTP-RV Simulation of Three-phase 6-Pulse PWM Rectifier (3상 6펄스 PWM 정류기의 D-Q 제어 기반 출력전압 제어 알고리즘 및 EMTP-RV 시뮬레이션 연구)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.45-52
    • /
    • 2021
  • The space vector control based voltage control method for a three-phase PWM rectifier requires a lot of effort to design an optimal switching pattern since a switching pattern for the switching section must be designed. In this study, a D-Q control based SPWM output voltage control algorithm was studied for the three-phase six-pulse CVS type rectifier. In the output voltage control algorithm, three-phase reference signals are obtained from the D-Q transformation based on the space vector representation method, instead of the switching pattern, SPWM method is used to generate rectifier switching control signals. Next, a three-phase six-pulse CVS PWM rectifier based on D-Q transformation and SPWM was modeled using EMTP-RV. Finally, the validity of the D-Q control-based SPWM voltage control algorithm was confirmed by comparing the output voltage waveform obtained through EMTP-RV simulation works with a reference value and confirming that the output voltage accurately follows the reference voltage.

A Study on the Voltage Control of a Single Phase Full-bridge Inverter using SPWM Driving Method (SPWM 구동 방식을 이용한 단상 풀 브리지 인버터의 전압 제어에 대한 연구)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.851-858
    • /
    • 2017
  • In this study, the voltage control system of a single phase full bridge inverter was designed based on the SPWM driving method. The voltage control system consists of a single-phase full-bridge inverter, a PI controller for linearly compensating the error between the reference voltage and the output voltage, a PWM driving circuit for generating the gate signal using the SPWM method from the controller signal, and an LC filter for filtering the inverter output voltage waveform into sinusoidal waveform. Finally, the voltage control system of a single-phase full-bridge inverter based on the PWM driving method was modeled using EMTP-RV and by showing that the output voltage accurately converges the reference voltage through several simulation examples, the validity of the control system design was verified.

A Study on the SPWM based Power Conversion Technology of the Three-Phase Photovoltaic Inverter Using DSP (DSP를 이용한 3상 태양광 인버터의 SPWM 전력변환기술에 대한 연구)

  • Kim, Hyo-Seong;Yoo, Ho-Sung;Lee, You-Jung;Jung, Hoon;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1099-1106
    • /
    • 2017
  • In this paper, a three phase inverter control methodology for photovoltaic generation system, which is a renewable energy source, was studied. The voltage source inverter type of the constant voltage supply type was selected as the three phase photovoltaic inverter, and SWPM method was selected as control technique. a small capacity three phase photovoltaic inverter system, which has a DSP with powerful high speed data processing ability as the main controller and a solar controller as current controller to supply a certain amount of current to charge the battery, was made and tested for SPWM function.

A UPS BASED ON A NEW SPWM GENERATOR

  • Liu, Shulin;Liu, Jian
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.808-812
    • /
    • 1998
  • A new SPWM control method for Uninterrupted Power System(UPS) is presented. A triangle waveform is used as the reference signal. The desired SPWM control signal can be obtained more easily with a group of comparators. The output AC voltage can be regulated by controlling the lower reference and the upper reference of the comparators according to the feedback voltage. Basic principle, an actual circuit and the experimental results on a 500W UPS for computer system is discussed as an example.

  • PDF

Implementation of a No Pulse Competition CPS-SPWM Technique Based on the Concentrated Control for Cascaded Multilevel DSTATCOMs

  • Wang, Yue;Yang, Kun;Chen, Guozhu
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1139-1146
    • /
    • 2014
  • Digital signal processor (DSP) and field programmable gate array (FPGA) based concentrated control systems are designed for implementing CPS-SPWM strategies. The self-defined universal asynchronous receiver/transmitter (UART) protocol is used for communication between a master controller and an individual module controller via high speed links. Aimed at undesired pulse competition, this paper analyzes its generation mechanism and presents a new method for eliminating competition pulses with no time delay. Finally, the proposed concentrated controller is applied to a 10kV/10MVar distribution static synchronous compensator (DSTATCOM) industrial prototype. Experimental results show the accuracy and reliability of the concentrated controller, and verify the superiority of the proposed elimination method for competition pulses.

A Study of the SPWM High-Frequency Harmonic Circulating Currents in Modular Inverters

  • Xu, Sheng;Ji, Zhendong
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2119-2128
    • /
    • 2016
  • Due to detection and control errors, some high-frequency harmonics with voltage-source characteristics cause circulating currents in modular inverters. Moreover, the circulating currents are usually affected by the output filters (OF) of each module due to their filter and resonance properties. The interaction among the circulating currents in the modules increase the power loss and reduce system stability and control precision. Therefore, this paper reports the results of a study on the SPWM high-frequency harmonics circulating currents for a double-module VSI. In the paper, an analysis of the circulating-current circuits is briefly described. Next, a mathematic model of the single-module output voltage based on the carrier frequency of SPWM is built. On this basis, through mathematic modeling of high-frequency harmonic circulating currents, the formation mechanism and distribution characteristics of circular currents and their influences are studied in detail. Finally, the influences of the OF on the circulating currents are studied by mainly taking an LC-type filter as an example. A theoretical analysis and experimental results demonstrate some important characteristics. First, the carrier phase shifting of the SPWM for each module is the major cause of the SPWM harmonic circulating currents, and the circulating currents are in an odd distribution around n-times the carrier frequency $n{\omega}_s$, where n = 1, 2, 3, ${\ldots}$. Second, the harmonic circular currents do not flow into the parallel system. Third, the OF can effectively suppress the non-circulating part of the high-frequency harmonic currents but is ineffective for the circulation part, and actually reduces system stability.

Sinewave-PWM ZVS Inverter using High-Frequency Transformer for Utility AC Voltage Link

  • Chandhaket S.;Ogura K.;Konishi Y.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.511-515
    • /
    • 2003
  • This paper presents a novel prototype of the utility-interfaced sinusoidal pulse width modulated (SPWM) inverter using the high-frequency flyback transformer fur the small-scale solar photo-voltaic power conditioner (1kW - 4kW). The proposed SPWM power conditioner circuit with a high-frequency link has a function of electrical isolation, which is vital fur solar photovoltaic power conditioner systems with the viewpoint of safety and convenience. The discontinuous conduction mode (DCM) operation of the flyback transformer is also maintained to simplify the topology of the inverter circuit and control scheme. First, the operating principle of the proposed circuit is described far the understanding of the circuit parameters establishment. Then, the digitally constructed SPWM control scheme is presented. The proposed circuit is verified by the computer simulation and the prototype experiment.

  • PDF

A study on Photovoltaic System to Considers a Solar Position Tracker for Air Conditioner a Clinic room (병실 냉.난방장치용 태양 위치 추적기를 이용한 태양광 발전시스템에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1355-1362
    • /
    • 2007
  • In this paper, these setting can be useful in the microprocessor and sensor that designed to improve the efficiency of the photovoltaic system the photovoltaic position tracker device, and compared the normal photovoltaic system of fixed form with the photovoltaic system of solar position tracked form. Moreover, this is compared the catalogue of solar cell module and the simulation through a mathematics modelling with the solar cell's characteristic interpreting and that is composed an power conversion system with boost converter and voltage source inverter. This device can be used to the constant voltage control method for maximum power point tracking in boost converter control. Experiment Results is shown that using a SPWM(Sinusoidal Pulse Width Modulation) control method in inverter control.

  • PDF

The SPWM Fuzzy Controller for speed control of Induction Motor

  • Kamsri, T.;Riewruja, V.;Ukakimaparn, P.;Pongswatd, S.;Kummool, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.465-465
    • /
    • 2000
  • The paper presents the fuzzy control technique to adjust the gain schedule in the fuzzy controller. The micro computer is designed to the fuzzy controller to execute the proportional gain with the data of the error and speed command. The gain schedule is the fuzzy set which execute based on the fuzzy rule. The gain schedule from the fuzzy controller is fed to the sinusoidal pulse width modulation (SPWM) inverter for control the response and speed of the induction motor. The induction motor coupling to the DC motor and tachogenerator which DC motor as a load. The test result of the fuzzy control technique in the open loop control, it provides a good response and in the closed loop control it can control speed in the any condition of load design

  • PDF