• Title/Summary/Keyword: SPV(Single Point Vulnerability)

Search Result 7, Processing Time 0.029 seconds

Failure Mode Effective Analysis for selection of Single Point Vulnerability in New type Nuclear Power Plant (신규노형 원전의 발전정지유발기기 선정을 위한 고장모드영향분석)

  • Hyun, Jin Woo;Yeam, Dong Un
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • For decreasing an unexpected shutdown of Nuclear Power Plants, Korea Hydro & Nuclear Power co.(KHNP) has developed Single Point Vulnerability(SPV) of NPPs since 2008. SPV is the equipment that cause reactor shutdown & turbine trip or more than 50% power rundown due to its malfunction. New type Nuclear Power Plants need to develop the SPV list, so performed the SPV selection for about 1 year. To develop this, Failure Mode Effect Analysis(FMEA) methods are used. As results of FMEA analysis, about 700 equipment are selected as SPV. Thereafter those are going to be applied to new type Nuclear Power Plants to enhance equipment reliability.

Evaluation of Single Point Vulnerability on Korean Standard Nuclear Power Plants (국내 표준형 원전의 단일 고장 취약성(SPV) 평가)

  • Chi, Moon-Goo;Kim, Myung-Su
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.685-686
    • /
    • 2008
  • For the purpose of reducing the plant trip/transient by the failure of a single component during plant operation or maintenance, the list of critical components with Single Point Vulnerability (SPV) on KSNP (Korean Standard Nuclear Power Plant), the standardized methodology of SPV evaluation and the plan to improve reliability of the equipment have been established. In addition, SPV component lists for the other domestic operating Nuclear Power Plants have been made, and the proper procedure for SPV management will be developed.

  • PDF

Selection of Single Point Vulnerability through the Failure Mode Effect Analysis of Equipment in Newly built Nuclear Power Plant (신규원전의 기기별 고장분석을 통한 발전정지유발기기 선정)

  • Hyun, Jin-Woo;Yeom, Dong-Un;Song, Tae-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.509-512
    • /
    • 2012
  • For decreasing an unexpected shutdown of Nuclear Power Plants, Korea Hydro & Nuclear Power co.(KHNP) has developed Single Point Vulnerability(SPV) of NPPs since 2008. SPV is the equipment that cause reactor shutdown & turbine trip or more than 50% power rundown due to its malfunction. Newly built Nuclear Power Plants need to develop the SPV list, so performed the job which analyse equipment failure effect for SPV selection for 1 year. To develop this, Failure Mode Effect Analysis(FMEA) and Fault Tree Analysis(FTA) methods are used. As results of this analysis, about 900 equipment are selected as SPV. Thereafter those are going to be applied to Nuclear Power Plants to enhance equipment reliability.

A Study on the Functional Importance Determination Methodology for Components in Nuclear Power Plants (원전 기기의 기능적중요도결정 방법론에 대한 연구)

  • Song, Tae-Young
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • In around 2000, the U.S. NPPs have developed the various advanced engineering processes based on the INPO AP-913(Equipment Reliability Process Description) and showed the high performance in availability. With these benchmarking cases, the Korean NPPs have introduced the advanced engineering technology since 2005. The first step of the advanced engineering is to analyze and determine component importance for all components of a plant. This process is called Functional Importance Determination(FID). These results are basically utilized to determine the priority with limited resources in various areas. However, because the consistency of FID results is insufficient despite applying the same criteria in the existing operating NPPs, the degree of application is low. Therefore, this paper presents the improved methodology for FID interfacing system functions of Maintenance Rule Program and results of Single Point Vulnerability(SPV). This improved methodology is expected to contribute to enhance the reliability of FID data.

Single Point Vulnerability Analysis of Reactor Coolant System in OPR-1000 (표준형 원전 원자로냉각재계통의 발전정지유발기기 분석)

  • Lee, Eun-Chan;Bae, Yeon-Kyoung;Kim, Myung-Su
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1999-2000
    • /
    • 2011
  • 본 연구의 목적은 발전소의 정상적인 출력운전을 위해 필요한 주요 계통의 기능에 영향을 미쳐 발전소 불시정지를 유발할 수 있는 핵심 기기, 즉, 발전정지유발기기의 설치 개소를 체계적인 방법을 통하여 정밀 분석하고, 해당 기기의 고장모드와 그 영향을 검토하여 이를 방지하기 위한 대책을 수립하도록 하는 것이다. 발전정지유발기기의 평가는 발전소 종사자로 하여금 가동 중 발전소에서 발생 가능한 발전정지 영향기기와 그들의 상호관계를 이해하고, 정량적 평가를 통해 해당기기들의 발전소 발전정지 영향을 시각적으로 확인하여 불시 발전정지를 예방할 수 있는 대응 논리를 인지할 수 있도록 하는데 그 목적이 있다. 원자로냉각재계통에 대한 발전정지유발기기(SPV, Single Point Vulnerability)를 분석하기 위해 고장모드영향분석(FMEA, Failure Mode Effect Analysis)을 수행하고 상세 고장수목을 개발하여 통합단위의 계통 분석을 수행하였다. 분석결과 원자로냉각재계통의 발전정지유발기기는 원자로냉각재 펌프와 가압기 주살수 밸브의 제어회로에 집중되어 있는 것으로 나타났다.

  • PDF

Development of Engineering Program for APR1400 Feedwater Supplying System (APR1400 급수공급계통 엔지니어링 프로그램 개발)

  • Yeom, Dong Un;Ju, Tae Young;Hyun, Jin Woo
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.12-22
    • /
    • 2017
  • Korea Hydro & Nuclear Power Co. (KHNP) has implemented engineering programs for operating nuclear power plants. Engineering programs are maintenance rule (MR), functional importance determination (FID), single point vulnerability (SPV) and functional equipment group (FEG). Recently, KHNP has developed engineering programs for APR1400 feedwater supplying system to establish the advanced engineering system and will verify the suitability of engineering programs through implementing in new nuclear power plant. Consequently, it is expected that the reliability of APR1400 feedwater supplying system will be improved by implementing engineering programs.

A Study on the Work Management Method Considering Risks in Nuclear Power Plants (원자력발전소에서 리스크를 고려한 작업관리 방법)

  • Song, Tae-Young
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • Nuclear power plants(NPPs) are consisted of power production functions and safety functions preventing leakage of radiation. Operators working in NPPs shall maintain these functions during an operation period through various activities such as improvement & modification, corrective maintenance, preventive maintenance and surveillance test. According to the performance of these work activities, there are configuration changes in NPPs systems. Its changes cause the increase of safety risks(CDF) and plant trip risks. Recently, the importance of risk management is increasing gradually in the operation process of NPPs. Therefore, this paper presents the work management methods using the various risk monitoring systems during power operation and overhaul period. Also this paper suggests the optimum application ways of risk systems for work management.