• Title/Summary/Keyword: SPR joint

Search Result 14, Processing Time 0.02 seconds

Tensile-Shear Fatigue Strength of Self-Piercing Rivets Joining Dissimilar Metal Sheets (이종재료 Self-Piercing Rivets 접합부의 인장-전단 피로강도)

  • Kang, Se Hyung;Kim, Taek Young;Oh, Man Jin;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • Self-piercing riveting (SPR) process is gaining popularity due to its many advantages. The SPR does not require a pre-drilled hole and has capability to join a wide range of similar or dissimilar materials and combinations of materials. This study investigated the fatigue strength of self-piercing rivet joint with aluminum alloy (Al-5052) and steel (SPCC) sheets. Static and fatigue tests on tensile-shear specimens were conducted. From the static strength aspect, the optimal punching force for the specimen with upper SPCC (U.S) sheet and lower aluminum alloy(L.A) sheets was 34 kN. During static test the specimens fractured in pull-out fracture mode due to influence of plastic deformation of joining area. There was a relationship between applied load amplitude $P_{amp}$ and number of cycles N ; $P_{amp}=19588N_f^{-0.211}$ and $P_{amp}=4885N_f^{-0.083}$ for U.S-L.A and U.A-L.S specimens, respectively. U.A-L.S fatigue specimens failed due to fretting crack initiation around the rivet neck between upper and lower sheets.

Fatigue Strength Evaluation of Self-Piercing Riveted Al-5052 Joints (셀프 피어싱 리베팅한 Al-5052 접합부의 피로강도 평가)

  • Kang, Se Hyung;Hwang, Jae Hyun;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.1-6
    • /
    • 2015
  • Self-piercing riveting (SPR) is receiving more recognition as a possible and effective solution for joining automotive body panels and structures, particularly for aluminum parts and dissimilar parts. In this study, static strength and fatigue tests were conducted using coach-peel and cross-tension specimens with Al-5052 plates for evaluation of fatigue strength of the SPR joints. For the static experiment results, the fracture modes are classified into pull-out fracture due to influence of plastic deformation of joining area. During the fatigue tests for the coach-peel and cross-tension specimens with Al-5052, interface failure mode occurred on the top substrate close to the rivet head in the most cycle region. There were relationship between applied load amplitude $P_{amp}$ and life time of cycle N, $P_{amp}=715.5{\times}N^{-0.166}$ and $P_{amp}=1967.3{\times}N^{-0.162}$ were for the coach-peel and cross- tension specimens, respectively. The finite element analysis results for specimens were adopted for the parameters of fatigue lifetime prediction. The relation between SWT fatigue parameter and number of cycles was found to be $SWT=192.8N_f^{-0.44}$.

Influence of the Flow Stress of the Rivet on the Numerical Prediction of the Self-Piercing Rivet (SPR) Joining (Self-Piercing Rivet 접합공정의 수치예측에 미치는 리벳 유동응력의 영향)

  • Kim, S.H.;Bae, G.;Song, J.H.;Park, K.Y.;Park, N.
    • Transactions of Materials Processing
    • /
    • v.29 no.5
    • /
    • pp.257-264
    • /
    • 2020
  • This paper is concerned with the influence of the plastic property of the rivet on the numerical prediction of the Self-Piercing Rivet (SPR) Joining. In order to predict the plastic property of the rivet, a ring compression specimen was directly fabricated from the rivet used for the mechanical joining of dissimilar materials, and the FE analysis together with the ring compression test was iteratively carried out by changing the plastic property of the rivet. For reliable FE analysis, a friction coefficient was estimated based on a friction calibration curve, measuring the reductions in inner diameter and height of the ring specimen after the compression test. From each simulation result, the force-displacement curves were then compared from each other so as to obtain the rivet plastic property that shows good agreement with the experimental result. The SPR joining between GA590 1.0t and Al5052 2.0t was conducted, and the numerical prediction was performed with the use of the plastic property evaluated based on the inverse analysis and the one referred from Mori et al. [11]. Comparison of the experiment and the numerical predictions in terms of the interlock and bottom thickness revealed that the reliable evaluation of the plastic property of the rivet is necessary for the trustworthy numerical prediction of the SPR joining.

Mechanical fastening and joining technologies to using multi mixed materials of car body (차체 소재 다변화에 따른 체결 및 접합기술)

  • Kim, Yong;Park, Ki-Young;Kwak, Sung-Bok
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.12-18
    • /
    • 2015
  • The ultimate goal of developing body is revealed the "lightweight" at latest EuroCarBody conference 2012 and the most core technology is joining process to make lightweight car body design. Accordingly, in this study, the car body assembly line for the assembly process applies to any introduction, particularly in the assembly of aluminum alloy and composite materials applied by the process for the introductory approached. Process were largely classified by welding (laser, arc, resistance, and friction stir welding), bonding (epoxy bonding) and mechanical fastening (FDS, SPR, Bolting and clinching). Applications for each process issues in the case and the applicable award was presented, based on the absolute strength of the test specimens and joining characteristics for comparative analysis were summarized. Finally, through this paper, we would tried to establish the characteristics of the joint for lightweight structure.