• Title/Summary/Keyword: SPR effect

Search Result 30, Processing Time 0.029 seconds

The Effect of Nasal Steroid Spray on Contact Granuloma of Larynx (접촉성 육아종 치료에 비강 스테로이드 분무가 미치는 영향)

  • Lee, GilJoon;Ahn, Dongbin;Sohn, Jin Ho
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.29 no.2
    • /
    • pp.79-82
    • /
    • 2018
  • Background and Objectives : Laryngeal contact granuloma is benign inflammatory disease induced by excessive mechanical contact of larynx such as endotracheal intubation, voice abuse, laryngeal microsurgery as well as laryngopharygeal reflux. Because it is caused by various risk factors, multiple treatment modalities are required. The purpose of study is to evaluate treatment effect of topical steroid through nasal cavity in contact granuloma. Materials and Method : Fifty-two patients were enrolled in this study with exception of intubation granuloma. Patients were classified with four groups (Proton pump inhibitor (PPI), Nasal steroid spray (SPR), PPI+SPR, Observation) according to treatment modality. Results : Patients who treated with PPI (Odds ratio 2.45, p=0.03) and combination of PPI and SPR (Odds ratio 2.88, p<0.01) had significantly better response than patients who not treated with medical therapy. Conclusion : Combination therapy of nasal steroid spray and PPI is effective for contact granuloma of larynx and considered as a treatment of choice rather than PPI only treatment.

Development of Thermo-Cosmetics Using Photothermal Effect of Gold Nanoparticles (금 나노입자의 광열효과를 이용한 온열화장품 개발)

  • Lee, Jae-Yeul;Kim, Bo-Mi;Park, Se-Ho;Choi, Yo-Han;Shim, Kyu-Dong;Moon, Sung-Bae;Jang, Eue-Soon;Yang, Seun-Ah;Jhee, Kwang-Hwan
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.1
    • /
    • pp.27-34
    • /
    • 2015
  • Many applications of nanoparticles have been developed since 1970s. Surface plasmon resonance (SPR) effect can be generated at the surface of nanoparticles by illumination. SPR is the resonant oscillation of conduction electrons at the surface material stimulated by incident light. The collisions between excited electrons and metal atoms can cause the production of thermal energy (photothermal effect). Here, we presented the development of thermo-cosmetics using photothermal effect of gold nanoparticles. Gold nanoparticles (GNPs) were chosen for it's low toxicity. We also and investigated the cell biocompatibility and heating effectiveness for photothermal effect of GNPs. Synthesized GNPs were verified by UV-vis spectrophotometer, where GNP has a characteristic absorbance spectrum. Concentration of GNP was measured by atomic absorption analyzer. The cytotoxicity was confirmed by MTT assay and double staining assay. Photothermal effect of GNP was demonstrated by the thermal increasing properties depending on GNP concentration, which was taken by an IR-thermal camera with a xenon lamp as the light source. If the thermal effect of GNP is applied for thermo-cosmetics, it can supply heat to skin by converting solar energy into thermal energy. Thus, cosmetics containing GNPs can provide benefits to people in the cold region or winter season for maintaining skin temperature, which lead to a positive effect on skin health.

Effect of Piezoactuator Length Variation for Vibration Control of Beams (보의 진동제어를 위한 압전 액추에이터의 길이변화 효과 연구)

  • Lee, Young-Sup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.442-448
    • /
    • 2008
  • This paper presents an approach to define an optimal piezoactuator length to actively control structural vibration. The optimal ratio of the piezoactuator length against beam length when a pair of piezoceramic actuator and accelerometer is used to suppress unwanted vibration with direct velocity feedback (DVFB) control strategy is not clearly defined so far. It is well known that direct velocity feedback (DVFB) control can be very useful when a pair of sensor and actuator is collocated on structures with a high gain and excellent stability. It is considered that three different collocated pairs of piezoelectric actuators (20, 50 and 100 mm) and accelerometers installed on three identical clamped-clamped beams (300 * 20 * 1 mm). The response of each sensor-actuator pair requires strictly positive real (SPR) property to apply a high feedback gain. However the length of the piezoactuator affects SPR property of the sensor-actuator response. Intensive simulation and experiment shows the effect of the actuator length variation is strongly related with the frequency range of SPR property. A shorter actuator gave a wider SPR frequency range as a longer one had a narrower range. The shorter actuator showed limited control performance in spite of a higher gain was applied because the actuation force was relatively small. Thus an optimal length ratio (actuator length/beam length) was suggested to obtain relevant performance with good stability with DVFB strategy. The result of this investigation could give important information in the design of active control system to suppress unwanted vibration of smart structures with piezoelectric actuators and accelerometers.

  • PDF

Convergence studies for Enriched Free Mesh Method and its application to fracture mechanics

  • Matsubara, Hitoshi;Yagawa, Genki
    • Interaction and multiscale mechanics
    • /
    • v.2 no.3
    • /
    • pp.277-293
    • /
    • 2009
  • The Enriched Free Mesh Method (EFMM) is a patch-wise procedure in which both a displacement field on an element and a stress/strain field on a cluster of elements connected to a node can be defined. On the other hand, the Superconvergent Patch Recovery (SPR) is known to be an efficient post-processing procedure of the finite element method to estimate the error norm at a node. In this paper, we discuss the relationship between solutions of the EFMM and those of the SPR through several convergence studies. In addition, in order to solve the demerit of the smoothing effect on the fracture mechanics fields, we implement a singular stress field to a local patch in the EFMM, and its effectiveness is investigated.

Effect of scattered x-rays on subject contrast and image sharpness

  • Arimura, Hidetaka;Date, Takuji;Morikawa, Kaoru;Kubota, Hideaki;Matsumoto, Masao;Kanamori, Hitoshi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 1999.11a
    • /
    • pp.278-281
    • /
    • 1999
  • The purpose of this study is to investigate the effect of the scattered x-rays on the subject contrast and image sharpness for various tube voltages. For the purpose, we measured the scatter-to-primary ratio(SPR) for the tube voltages f 50 to 100kV and obtained the tube voltage dependence of the subject contrast of an aluminum plate in a polymethyl methacrylate(PMMA) phantom. Furthermore, the overall modulation transfer functions(MTFs), which consist of MTFs of a screen-film system and scatter FTMs, were obtained for tube voltages of 50 to 100 kV. The subject contrast decreased with the tube voltage due to that the SPR increased with the tube voltage and that the difference in effective linear attenuation coefficients between the object and its surroundings decreased with the tube voltage. The maximum frequency of the overall MTF decreased from about 2 mm$\^$-1/ to 1 mm$\^$-1/ with the tube voltage increasing from 50 to 100 kV.

  • PDF

Evaluation of antioxidant property of heat shock protein 90 from duck muscle

  • Zhang, Muhan;Wang, Daoying;Xu, Xinglian;Xu, Weimin
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.724-733
    • /
    • 2021
  • Objective: The objectives of this study were to investigate the direct antioxidative effect of 90 Kda heat shock protein (Hsp90) obtained from duck muscle. Methods: The interaction of Hsp90 with phospholipids and oxidized phospholipids was studied with surface plasmon resonance (SPR), and their further oxidation in the presence of Hsp90 was evaluated with thiobarbituric acid reactive substances (TBARS) assay. The scavenging effect on the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis (3-ethylbenzthiazoline-6-sulfonic acid (ABTS) was measured, and the electron paramagnetic resonance (EPR) spectroscopy in combination with 5-tert-Butoxycarbonyl-5-methyl-1-pyrroline-N-oxide and 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) was utilized to determine the abilities of Hsp90 in scavenging hydroxyl and PTIO radicals. Results: SPR showed Hsp90 could bind with both phospholipids and oxidized phospholipids, and prevent their further oxidation by the TBARS assay. The DPPH and ABTS scavenging activity increased with Hsp90 concentration, and could reach 27% and 20% respectively at the protein concentration of 50 μM. The EPR spectra demonstrated Hsp90 could directly scavenge ·OH and PTIO· radicals. Conclusion: This suggests that Hsp90, a natural antioxidant in meat, may play an important role in cellular defense against oxidative stress, and may have potential use in meat products.

Characteristics Analysis of Total Internal Reflection-based Dielectric Multi-layer Sensor Using Plasmonics Phenomena (플라즈모닉스 현상을 이용한 전반사 기반 다층 유전체 박막 센서의 특성 분석)

  • Kim, Hong-Seung;Lee, Tae-Kyeong;Kim, Doo-Gun;Jung, You-Ra;Oh, Geum-Yoon;Lee, Byeong-Hyeon;Ki, Hyun-Chul;Choi, Young-Wan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.516-520
    • /
    • 2012
  • In this paper, we have theoretically analyzed and designed a dielectric multi-layer sensor with a SPR (surface plasmon resonance) using analytical calculation and FDTD (finite difference time-domain) methods. The proposed structure is composed of periodic layer and thin metal film. It has many advantages. One of that is a high sensitivity of the SPR. Another is a high Q-factor of the characteristics in the PhC (photonic crystals) micro-cavity structure. The incident light has double resonance characteristics, because the filtered light by PhC structure, dielectric multi-layer, is met the thin metal film for SPR effect. We have also observed the change of resonance characteristics according to the variation of effective index on the metal film.

Preparation of Bi/Bi2MoO6 Plasmonic Photocatalyst with High Photocatalytic Activity Under Visible Light Irradiation

  • Zou, Chentao;Yang, Zhiyuan;Liang, Mengjun;He, Yunpeng;Yang, Yun;Yang, Shuijin
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850127.1-1850127.13
    • /
    • 2018
  • Bi metal deposited on $Bi_2MoO_6$ composite photocatalysts have been successfully synthesized via a simple reduction method at room temperature with using $NaBH_4$ as the reducing agent. The photocatalytic activity of the composite was evaluated by degradation of rhodamine B (RhB) and bisphenol A (BPA) solution under visible light. The rate constant of $Bi/Bi_2MoO_6$ composite to RhB is 10.8 times that of $Bi_2MoO_6$, and the degradation rate constant of BPA is 6.9 times of that of $Bi_2MoO_6$. Nitrogen absorption-desorption isotherm proved that the increase of specific surface area is one of the reasons for the improvement of photocatalytic degradation activity of $Bi/Bi_2MoO_6$ composites. The higher charge transfer efficiency of $Bi/Bi_2MoO_6$ is found through the characterization of the photocurrent and impedance, which are attributed to the surface plasmon resonance (SPR) effect produced by the introduction of the metal Bi monomer in the composite. Free radical capture experiments proved that cavitation is the main active species. Based on the above conclusions, a possible mechanism of photocatalytic degradation is proposed.

Effect of the Configuration of Contact Type Textile Electrode on the Performance of Heart Activity Signal Acquisition for Smart Healthcare (스마트 헬스케어를 위한 심장활동 신호 검출용 접촉식 직물전극의 구조가 센싱 성능에 미치는 영향)

  • Cho, Hyun-Seung;Koo, Hye-Ran;Yang, Jin-Hee;Lee, Kang-Hwi;Kim, Sang-Min;Lee, Jeong-Hwan;Kwak, Hwy-Kuen;Ko, Yun-Su;Oh, Yun-Jung;Park, Su-Youn;Kim, Sin-Hye;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.4
    • /
    • pp.63-76
    • /
    • 2018
  • The purpose of this study was to investigate the effect of contact type textile electrode structure on heart activity signal acquisition for smart healthcare. In this study, we devised six contact type textile electrodes whose electrode size and configuration were manipulated for measuring heart activity signals using computerized embroidery. We detected heart activity signals using a modified lead II and by attaching each textile electrode to the chest band in four healthy male subjects in a standing static posture. We measured the signals four times repeatedly for all types of electrodes. The heart activity signals were sampled at 1 kHz using a BIOPAC ECG100, and the detected original signals were filtered through a band-pass filter. To compare the performance of heart activity signal acquisition among the different structures of the textile electrodes, we conducted a qualitative analysis using signal waveform and size as parameters. In addition, we performed a quantitative analysis by calculating signal power ratio (SPR) of the heart activity signals obtained through each electrode. We analyzed differences in the performance of heart activity signal acquisition of the six electrodes by performing difference and post-hoc tests using nonparametric statistic methods on the calculated SPR. The results showed a significant difference both in terms of qualitative and quantitative aspects of heart activity signals among the tested contact type textile electrodes. Regarding the configurations of the contact type textile electrodes, the three-dimensionally inflated electrode (3DIE) was found to obtain better quality signals than the flat electrode. However, regarding the electrode size, no significant difference was found in performance of heart signal acquisition for the three electrode sizes. These results suggest that the configuration method (flat/3DIE), which is one of the two requirements of a contact type textile electrode structure for heart activity signal acquisition, has a critical effect on the performance of heart activity signal acquisition for wearable healthcare. Based on the results of this study, we plan to develop a smart clothing technology that can monitor high-quality heart activity without time and space constraints by implementing a clothing platform integrated with the textile electrode and developing a performance improvement plan.

Characterization of Repairing PVC profile for Trenchless Sewer Pipeline (비굴착 하수관로용 PVC 프로파일 보수재 특성 평가)

  • Park, Joon-Ha;Jeon, Sang-Ryeol;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4977-4983
    • /
    • 2015
  • The full depth excavation induces couple of technical and social problems like increase of construction cost and time for excavation and backfill, increase of public complains and delay of traffic, and so force. In order to overcome these problems, lots of laboratory tests were carried out for sewer pipeline of maintenance materials with trenchless methods. The testing materials are PVC strip and then the lab tests were followed by Korean Standard. We will treat the structure safety and pipe integrity of PVC profile more excellent than the profile have application to SPR. There is no side-effect to process and to satisfy the criteria of tensile strength, impact strength and softening temperature. The profile with resin adhesive showed no leakage of water at specific pressure.