• Title/Summary/Keyword: SPOT4/VEGETATION

Search Result 29, Processing Time 0.038 seconds

SPOT/VEGETATION-based Algorithm for the Discrimination of Cloud and Snow (SPOT/VEGETATION 영상을 이용한 눈과 구름의 분류 알고리즘)

  • Han Kyung-Soo;Kim Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.4
    • /
    • pp.235-244
    • /
    • 2004
  • This study focuses on the assessment for proposed algorithm to discriminate cloudy pixels from snowy pixels through use of visible, near infrared, and short wave infrared channel data in VEGETATION-1 sensor embarked on SPOT-4 satellite. Traditional threshold algorithms for cloud and snow masks did not show very good accuracy. Instead of these independent masking procedures, K-Means clustering scheme is employed for cloud/snow discrimination in this study. The pixels used in clustering were selected through an integration of two threshold algorithms, which group ensemble the snow and cloud pixels. This may give a opportunity to simplify the clustering procedure and to improve the accuracy as compared with full image clustering. This paper also compared the results with threshold methods of snow cover and clouds, and assesses discrimination capability in VEGETATION channels. The quality of the cloud and snow mask even more improved when present algorithm is implemented. The discrimination errors were considerably reduced by 19.4% and 9.7% for cloud mask and snow mask as compared with traditional methods, respectively.

A Defective Detector Suppression in the Short Wave Infrared Band of SPOT/VEGETATION-1

  • Han, Kyung-Soo;Kim, Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.403-409
    • /
    • 2003
  • Since SPOT4 satellite contained VEGETATION 1 sensor launched, the noise in VEGETATION data was occasionally arisen a difficulty for the data traitement. Blind line noise types were studied in VEGETATION-l short wave infrared channel(SWIR). In order to provide a precis product, the procedure for removing this noise is strongly recommended. In the case that the blind values are clearly distinguished from contamination-free values a simple threshold method was applied, while a changeable threshold method was used for the blind value mixed with contamination-free values. New algorithm presented in this study is consists of two method for each type of SWIR blind. After removing blind line, there were again some residual pixels of blind, because the threshold is not determinated sufficiently low. Lower threshold could remove the blind line as well as the contamination-free pixels. Nevertheless, the results showed a good qualitative improvement as compared with other algorithm.

Vegetation Water Status Monitoring around China and Mongolia Desert using Satellite Data (위성자료를 이용한 중국과 몽골 사막주변의 식생수분상태 모니터링)

  • Lee, Ga-Lam;Kim, Young-Seup;Han, Kyoung-Soo;Lee, Chang-Suk;Yeom, Jong-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.4
    • /
    • pp.94-100
    • /
    • 2008
  • Recently, global warming for climate system is a crucial issue over the world and it brings about severe climate change, abnormal temperature, a downpour, a drought, and so on. Especially, a drought over the earth surface accelerates desertification which has been advanced over the several years mainly originated from a climatic change. The objective of this study is to detect variation of vegetation water condition around China and Mongolia desert by using satellite data having advantage in observing surface biological system. In this study, we use SPOT/VEGETATION satellite image to calculate NDWI (Normalized Difference Water Index) around study area desert for monitoring of status of vegetation characteristics. The vegetation water status index from remotely sensing data is related to desertification since dry vegetation is apt to desertify. We can infer vegetation water status using NDWI acquired by NIR (Near infrared) and SWIR (Short wave infrared) bands from SPOT/VGT. The consequence is that NDWI decreased around desert from 1999 to 2006. The areas that NDWI was decreased are located in the northeast of Mongolian Gobi desert and the southeast of China Taklamakan desert.

  • PDF

How is SWIR useful to discrimination and a classification of forest types?

  • Murakami, Takuhiko
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.760-762
    • /
    • 2003
  • This study confirmed the usefulness of short-wavelength infrared (SWIR) in the discrimination and classification of evergreen forest types. A forested area near Hisayama and Sasaguri in Fukuoka Prefecture, Japan, served as the study area. Warm-temperate forest vegetation dominates the study site vegetation. Coniferous plantation forest, natural broad-leaved forest, and bamboo forest were analyzed using LANDSAT5/TM and SPOT4/HRVIR remote sensing data. Samples were extracted for the three forest types, and reflectance factors were compared for each band. Kappa coefficients of various band combinations were also compared by classification accuracy. For the LANDSAT5/TM data observed in April, October, and November, Bands 5 and 7 showed significant differences between bamboo, broad-leaved, and coniferous forests. The same significant difference was not recognized in the visible or near-infrared regions. Classification accuracy, determined by supervised classification, indicated distinct improvements in band combinations with SWIR, as compared to those without SWIR. Similar results were found for both LANDSAT5/TM and SPOT4/HRVIR data. This study identified obvious advantages in using SWIR data in forest-type discrimination and classification.

  • PDF

An Adjustment for a Regional Incongruity in Global land Cover Map: case of Korea

  • Park Youn-Young;Han Kyung-Soo;Yeom Jong-Min;Suh Yong-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.199-209
    • /
    • 2006
  • The Global Land Cover 2000 (GLC 200) project, as a most recent issue, is to provide for the year 2000 a harmonized land cover database over the whole globe. The classifications were performed according to continental or regional scales by corresponding organization using the data of VEGETATION sensor onboard the SPOT4 Satellite. Even if the global land cover classification for Asia provided by Chiba University showed a good accuracy in whole Asian area, some problems were detected in Korean region. Therefore, the construction of new land cover database over Korea is strongly required using more recent data set. The present study focuses on the development of a new upgraded land cover map at 1 km resolution over Korea considering the widely used K-means clustering, which is one of unsupervised classification technique using distance function for land surface pattern classification, and the principal components transformation. It is based on data sets from the Earth observing system SPOT4/VEGETATION. Newly classified land cover was compared with GLC 2000 for Korean peninsula to access how well classification performed using confusion matrix.

Comparison of the NDVI, ARVI and AFRI vegetation index, along with their relations with the AOD using SPOT 4 Vegetation data

  • Liu, Gin-Rong;Liang, Chih-Kang;Kuo, Tsung-Hua
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.582-584
    • /
    • 2003
  • This paper explores two such indexes----the Aerosol Free Vegetation Index (AFRI) and the Atmospherically Resistant Vegetation Index (ARVI). Comparisons were made with the NDVI (normalized vegetation index) to see if they indeed performed better. In general, the results showed that the AFRI and ARVI (with gamma=1) did indeed perform better than their NDVI counterpart study with the related channels were employed.

  • PDF

Multi-temporal analysis of vegetation indices for characterizing vegetation dynamics

  • Javzandulam, Tsend-Ayush;Tateishi, Ryutaro;Kim, Dong-Hee
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.405-407
    • /
    • 2003
  • An attempt has been in this study to delineate the characteristics of spectral signatures of the vegetation in terms of various VIs, particularly made the Normalized Difference Vegetation Index(NDVI), Modified Soil Adjusted Vegetation Index2(MSAVI2) and Enhanced Vegetation Index(EVI). Multitemporal SPOT-4 VEGETATION data from 1998 to 2002 have been used for the analysis. They have been compared with each other for their similarities and differences. The correlations between the vegetation indices observed at various degree of vegetation coverage during their different stages of growth were examined. All of the VIs have shown qualitative relationships to variations in vegetation. Apparently, the NDVI and MSAVI2 are highly correlated for all of the temporal changes, representing the different stages of phenology.

  • PDF

The Trend Analysis of Vegetation Change Applied to Unsupervised Classification Over East Asia: Using the NDVI 10-day data in 1999~2010 (무감독분류 기법을 이용한 동아시아지역의 식생변화 경향분석: 1999~2010 NDVI 10-day 자료를 바탕으로)

  • Kim, Sang-Il;Han, Kyung-Soo;Pi, Kyoung-Jin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.153-159
    • /
    • 2011
  • Vegetative land cover is an important variable many Earth system process, general circulation and carbon exchange model requires vegetative cover as boundary layer necessary to run model. The purpose of this study is to detect and to understand land surface change. To monitor changes of East Asia vegetation, we used NDVI 10-day MVC data derived from SPOT VEGETATION during 12 years from 1999 to 2010. Finally, according to the land cover of classified class, we performed analysis for dynamic zone(positive change zone and negative change zone), static zone in 1999, 2010. Therefore, land covers corresponding to each class have appeared change by 2010. Land cover change was confirmed by analyzing data during 12 years which appeared vegetation change of surrounding the actual desert area to east.

Development of the Ecohydrologic Model for Simulating Water Balance and Vegetation Dynamics (물수지 및 식생 동역학 모의를 위한 생태수문모형 개발)

  • Choi, Daegyu;Choi, Hyunil;Kim, Kyunghyun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.582-594
    • /
    • 2012
  • A simple ecohydorlogic model that simulates hydrologic components and vegetation dynamics simultaneously based on equations of soil water dynamics and vegetation's growth and mortality is discussed. In order to simulate ungauged watersheds, the proposed model is calibrated with indirected estimated observation data set; 1) empirically estimated annual vaporization, 2) monthly surface runoff estimated by NRCS-CN method, and 3) vegetation fraction estimated by SPOT/VEGETATION NDVI. In order to check whether the model is performed well with indirectly estimated data or not, four upper dam watersheds (Andong, Habcheon, Namgang, Milyang) in Nakdong River watershed are selected, and the model is verified.

Analyses and trends of forest biomass in higher Northern Latitudes

  • Tsolmon, R.;Tateishi, R.;Sambuu, B.;Tsogtbayar, Sh.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.965-967
    • /
    • 2003
  • Information on forest volume, forest coverage and biomass are important for developing global perspectives about CO$_{2}$ concentration changes. Forest biomass cannot be directly measured from space yet, but remotely sensed greenness can be used to estimate biomass on decadal and longer time scales in regions of distinct seasonality, as in the north. Hence, in this research, numerical methods were used to estimate forest biomass in higher northern regions. A regression model linking Normalized Difference Vegetation Index(NDVI), to forest biomass extracted from SPOT/4 VEGETATION data and PAL 8km data in regional and continental area (N40-N70) respectively. Statistical tests indicated that the regression model can be used to represent the changes of forest biomass carbon pools and sinks at high latitude regions over years 1982-2000. This study suggests that the implementation of estimation of biomass based on 8-km resolution NOAA/AVHRR PAL and SPOT-4/VEGETATION data could be detected over a range of land cover change processes of interest for global biomass change studies.

  • PDF