Development of the Ecohydrologic Model for Simulating Water Balance and Vegetation Dynamics

물수지 및 식생 동역학 모의를 위한 생태수문모형 개발

  • Choi, Daegyu (Department of Environmental Engineering, Pukyong National University) ;
  • Choi, Hyunil (Department of Civil Engineering, Yeungnam University) ;
  • Kim, Kyunghyun (Water Quality Control Center, National Institute of Environmental Research) ;
  • Kim, Sangdan (Department of Civil Engineering, Yeungnam University)
  • 최대규 (부경대학교 환경공학과) ;
  • 최현일 (영남대학교 건설시스템공학과) ;
  • 김경현 (국립환경과학원 수질통합관리센터) ;
  • 김상단 (영남대학교 건설시스템공학과)
  • Published : 2012.07.30

Abstract

A simple ecohydorlogic model that simulates hydrologic components and vegetation dynamics simultaneously based on equations of soil water dynamics and vegetation's growth and mortality is discussed. In order to simulate ungauged watersheds, the proposed model is calibrated with indirected estimated observation data set; 1) empirically estimated annual vaporization, 2) monthly surface runoff estimated by NRCS-CN method, and 3) vegetation fraction estimated by SPOT/VEGETATION NDVI. In order to check whether the model is performed well with indirectly estimated data or not, four upper dam watersheds (Andong, Habcheon, Namgang, Milyang) in Nakdong River watershed are selected, and the model is verified.

Keywords

References

  1. 최대규, 양정석, 정건희, 김상단(2011a). 유역 물수지 모의를 위한 개념적인 토양수분모형: 모형 보정에 필요한 수문성분 분석, 대한토목학회논문집, 31(3B), pp. 211-220.
  2. 최대규, 최민하, 안재현, 박무종, 김상단(2011b). Horton 지수의 재논의를 통한 수문분할의 변동성, 한국습지학회지, 13, pp. 35-44.
  3. 최대규, 최현일, 김상단(2011c) MODIS NPP 원격탐사자료를 이용한 우리나라 식생과 연강수량과의 관계 초등 분석, 한국방재학회논문집, 11, pp. 171-178.
  4. Allen, M. R. and Ingram, W. J. (2002). Constraints on Future Changes in Climate and the Hydrologic Cycle, Nature, 419, pp. 224-232. https://doi.org/10.1038/nature01092
  5. Allen, R. G., Pereira, L. S., Smith, M., Raes, D., and Wright, J. L. (2005). FAO-56 Dual Crop Coefficient Method for Estimating Evaporation from Soil and Application Extensions, Journal of Irrigation and Drainage Engineering, 131(1), pp. 2-13. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:1(2)
  6. Bai, Y., Wu, J., Qi, X., Pan, Q., Huang, J., Yang, D., and Han, X. (2008). Primary Production and Rain use Efficiency Across a Precipitation Gradient on the Mongolia Plateau, Ecology, 89(8), pp. 2140-2153. https://doi.org/10.1890/07-0992.1
  7. Baudena, M., Boni, G., Ferraris, L., von Hardenberg, J., and Provenzale, A. (2007). Vegetation Response to Rainfall Intermittency in Drylands: Results from a Simple Ecohydrological Box Model, Advances in Water Resources, 30, pp. 1320-1328. https://doi.org/10.1016/j.advwatres.2006.11.006
  8. Baudena, M. and Provenzale, A. (2007). Rainfall Intermittency and Vegetation Feedbacks in Drylands, Hydrology and Earth System Sciences Discussions, 4, pp. 4241-4264. https://doi.org/10.5194/hessd-4-4241-2007
  9. Carlson, T. N., Capehart, W. J., and Gillies, R. R. (1995). A New Look at the Simplified Method for Remote-sensing of Daily Evapotranspiration, Remote Sensing of Environment, 54, pp. 161-167. https://doi.org/10.1016/0034-4257(95)00139-R
  10. Choler, P., Sea, W., Raupach, M., and Leuning, R. (2010). A Simple Ecohydrlogical Model Captures Essentials of Seasonal Leaf Dynamics in Semi-arid Tropical Grasslands, Biogeosciences, 7, pp. 907-920. https://doi.org/10.5194/bg-7-907-2010
  11. Choudhury, B. J., Ahmed, N. U., Idso, S. B., Reginato, R. J., and Daughtry, C. S. T. (1994). Relations between Evaporation Coefficients and Vegetation Index Studied by Model Simulations, Remote Sensing of Environment, 50, pp. 1-17. https://doi.org/10.1016/0034-4257(94)90090-6
  12. Chow, V. T., Maidment, D. R., and Mays, L. W. (1988). Applied Hydrology, McGraw-Hill, United States, pp. 147-153.
  13. Cowan, I. R. (1965). Transport of Water in the Soil-plant-atmosphere System, Journal of Applied Ecology, 2(1), pp. 221-239. https://doi.org/10.2307/2401706
  14. Daly, E. and Porporato, A. (2005). A Review of Soil Moisture Dynamics: From Rainfall Infiltration to Ecosystem Response, Environmental Engineering Science, 25(1), pp. 9-24.
  15. D'Odorico, P., Laio, F., and Ridolfi, L. (2005). Noise-induced Stability in Dryland Plant Ecosystem, Proceedings of the National Academy of Sciences of the United States of America, pp. 10819-10822.
  16. Eagleson, P. (1978). Climate, Soil and Vegetation: 1. Introduction to Water Balance Dynamics, Water Resource. Research, 14, pp. 705-712. https://doi.org/10.1029/WR014i005p00705
  17. Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., and Mearns, L. O. (2000). Climate Extremes: Observations, Modeling, and Impacts, Science, 289, pp. 2068-2074. https://doi.org/10.1126/science.289.5487.2068
  18. Fang, J., Piao, S., Tang, Z., Peng, C., and Ji, W. (2001). Interannual Variability In Net Primary Production And Precipitation, Science, 293, pp. 1723. https://doi.org/10.1126/science.293.5536.1723a
  19. Frank, D. A. and Inouye, R. S. (1994). Temporal Variation in Actual Evapotranspiration of Terrestrial Ecosystems: Patterns and Ecological Implications, Journal of Biogeography, 21(4), pp. 401-411. https://doi.org/10.2307/2845758
  20. Garcia-Quijano, J. F. and Barros, A. P. (2005). Incorporating Canopy Physiology into a Hydrological Model: Photosynthesis, Dynamic Respiration, and Stomatal Sensitivity, Ecological Modelling, 185, pp. 29-49. https://doi.org/10.1016/j.ecolmodel.2004.08.024
  21. Gardner, W. R. (1960). Dynamic Aspects of Water Availability of Plants, Soil Science, 89(2), pp. 63-73. https://doi.org/10.1097/00010694-196002000-00001
  22. Gutman, G. and Ignatov, A. (1998) The Derivation of the Green Vegetation Fraction from NOAA/AVHRR Data for use in Numerical Weather Prediction Models, International Journal of Remote Sensing, 19, pp. 1533-1543. https://doi.org/10.1080/014311698215333
  23. Jensen, J. R. (2000). Remote Sensing of the Environment: An Earth Resource Perspective, Prentice Hall, United States, pp. 381-382.
  24. Ji, L. and Peters, A. J. (2004). A Spatial Regression Procedure for Evaluating the Relationship between AVHRR-NDVI and Climate in the Northern Great Plains, International Journal of Remote Sensing, 25, pp. 297-311. https://doi.org/10.1080/0143116031000102548
  25. Kim, S., Han, S., and Kavvas, M. L. (2008). Analytical Derivation of Steady-state Soil Water Probability Density Function Coupled with Simple Stochastic Point Rainfall Model, Journal of Hydrologic Engineering, 13, pp. 1069-1077. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:11(1069)
  26. Kim, S., Han, S., and Kim, E. (2011). Stochastic Modeling of Soil Water and Plant Water Stress using Cumulant Expansion Theory, Ecohydrology, 4, pp. 94-105. https://doi.org/10.1002/eco.127
  27. Kim, S., Kavvas, M. L., and Yoon, J. (2005). Upscaling of Vertical Unsaturated Flow Model under Infiltration Condition, Journal of Hydrologic Engineering, 10, pp. 151-159. https://doi.org/10.1061/(ASCE)1084-0699(2005)10:2(151)
  28. Knapp, A, K. and Smith, M. D. (2001). Variation Among Biomes in Temporal Dynamics of Aboveground Primary Production, Science, 291, pp. 481-484. https://doi.org/10.1126/science.291.5503.481
  29. Laio, F., Porporato, A., Ridolfi, L., and Rodriguez-Itube, I. (2001). Plants in Water-controlled Ecosystems: Active Role in Hydrologic Processes and Response to Water Stress II, Probabilistic Soil Moisture Dynamics, Advances in Water Resources, 24, pp. 707-723. https://doi.org/10.1016/S0309-1708(01)00005-7
  30. Levins, R. (1969). Some Demographic and Genetic Consequences of Environmental Heterogeneity for Biological Control, Bulletin of the Entomological Society of America, 15(3), pp. 237-240.
  31. Milly, P. C. D., Wetherald, R. T., Dunne, K. A., and Delworth, T. L. (2002). Increasing Risk of Great Floods in a Changing Climate, Nature, 415, pp. 514-517. https://doi.org/10.1038/415514a
  32. Monteith, J. L. (1977). Climate and Cfficiency of Crop Production in Britain, Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 281(980), pp. 277-294. https://doi.org/10.1098/rstb.1977.0140
  33. Nash, J. E. and Sutcliffe, J. V. (1970). River Flow Forecasting through Conceptual Models Part I - A Discussion of Principles, Journal of Hydrology, 10, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  34. Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C., Tucker, C. J., Myneni, R. B., and Running, S. W. (2003). Climate-driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999, Science, 300, pp. 1560-1563. https://doi.org/10.1126/science.1082750
  35. Noy-Meir, I. (1973). Desert Ecosystems: Environment and Procedures, Annual Review of Ecology and Systematics, 4, pp. 25-44. https://doi.org/10.1146/annurev.es.04.110173.000325
  36. Penman, H. L. (1948). Natural Evaporation from Open Water, Bare Soil and Grass, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 193(1032), pp. 120-145.
  37. Pettorelli, N, Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., and Stenseth, N. C. (2005). Using the Satellite-derived NDVI to Assess Ecological Responses to Environmental Change, Trends in Ecology and Evolution, 20(9), pp. 503-510. https://doi.org/10.1016/j.tree.2005.05.011
  38. Potter, C. S., Klooster, S., and Brooks, V. (1999). Interannual Variability In Terrestrial Net Primary Production: Exploration Of Trends And Controls On Regional To Global Scales, Ecosystems, 2. pp. 36-48.
  39. Quevedo, D. I. and Frances, F. (2008). A Conceptual Dynamic Vegetation-soil Model for Arid and Semiarid Zones, Hydrology and Earth System Sciences, 12, pp. 1175-1187. https://doi.org/10.5194/hess-12-1175-2008
  40. Rodriguez-Iturbe, I., Porporato, A., Laio, F., and Ridolfi, L. (2001). Plants in Water-controlled Ecosystems: Active Role in Hydrologic Processes and Response to Water Stress. I: Scope and General Outline, Advances in Water Resources, 24, pp. 697-705.
  41. Seaguist, J. W., Olsson, L., and Ardo, J. (2003). A Remote Sensing-based Primary Production Model for Grassland Biomes, Ecological modelling, 169, pp. 131-155. https://doi.org/10.1016/S0304-3800(03)00267-9
  42. Song, C. (2005). Spectral Mixture Analysis for Subpixel Vegetation Fractions in the Urban Environment: How to Incorporate Endmember Variability? Remote Sensing of Environment, 95, pp. 248-263. https://doi.org/10.1016/j.rse.2005.01.002
  43. Stephenson, N. L. (1990). Climatic Control of Vegetation Distribution: the Role of the Water-balance, American Naturalist, 135, pp. 649-670. https://doi.org/10.1086/285067
  44. Tilman, D. (1994). Competition and Biodiversity in Spatially-Structured Habitats, Ecology, 75(1), pp. 2-16. https://doi.org/10.2307/1939377
  45. Troch, P. A., Martinez, G. F., Pauwels, V. R. N., Durcik, M., Sivapalan, M., Harman, C., Brooks, P. D., Gupta, H., and Huxman, T. (2009). Climate and Vegetation Water use Efficiency at Catchment Scales, Hydrological Process, 23, pp. 2409-2414. https://doi.org/10.1002/hyp.7358
  46. Yoo, C., Kim, S., and Kim, T. W. (2006). Assessment of Drought Vulnerability based on the Soil Moisture PDF, Stochastic Environmental Research and Risk Assessment, 21, pp. 131-141. https://doi.org/10.1007/s00477-006-0050-9
  47. Zhu, L., Wu, B. F., Zhou, Y. M., Meng, J. H., and Zhang, N. (2008). A Study on Fast Estimation of Vegetation Fraction in three Gorges Emigration Area by using SPOT5 Imagery, The International Archives of The Photogrammetry Remote Sensing and Spatial Information Sciences, 37, pp. 987-991.