• Title/Summary/Keyword: SPOT image

Search Result 480, Processing Time 0.031 seconds

DEM GENERATION FOR SPOT-3 STRIPS USING ORBIT MODELING TECHNIQUE

  • Jeong, Jea-Hoon;Kim, Tea-Jung
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.37-40
    • /
    • 2008
  • The purpose of this paper is to extract DEMs from Spot-3 strips using orbit modeling technique. Spot-3 stereo strip images along 420km in distance were used for experiments. The orbit modeling technique has been suggested to establish accurate geometric models for a whole strip taken on the same orbit using only a small number of GCPs on the top area of the strip. This method enables extraction of orientation parameters of the scene along the strip that is needed to generate DEMs. Consequently, we were able to extract DEMs over the areas without accurate GCPs obtained by GPS surveying per each scene. Assessment of accuracy was carried out using USGS DTED. DEMs generated from the orbit modelling technique suggested showed satisfactory performance when quantitative analysis of accuracy assessment was carried out.

  • PDF

Design of Wind-Cloth Simulator Supporting AR-based Real-Time Interaction (Unity 환경에서 AR기반 실시간 상호작용 지원 Wind-Cloth 시뮬레이터의 설계)

  • Kim, Sang-Joon;Hong, Min;Choi, Yoo-Joo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.1015-1018
    • /
    • 2017
  • 본 논문에서는 바람의 방향제어가 어려운 기존 Unity windzone의 한계를 극복하는 spot windzone을 구현하고, 이를 cloth 모델과의 상호작용에 적용한 windcloth 시뮬레이터를 제시한다. 제안 spot windzone은 Unity windzone의 고정된 방향과 범위 문제점을 해결하기 위해 boxcast를 도입하여 방향과 영향권에 있는 cloth만을 감지하여 해당 Cloth에게만 외부 힘을 작동하도록 구현하였다. Spot windzone은 Vuforia를 이용하여, 목표이미지(Target Image)와 연결함으로써, 바람에 의한 cloth 움직임을 보다 직관적인 AR 기반 상호작용 방법으로 확인할 수 있도록 하였다.

The Indoor Position Detection Method using a Single Camera and a Parabolic Mirror (볼록 거울 및 단일 카메라를 이용한 실내에서의 전 방향 위치 검출 방법)

  • Kim, Jee-Hong;Kim, Hee-Sun;Lee, Chang-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.161-167
    • /
    • 2008
  • This article describes the methods of a decision of the location which user points to move by an optical device like a laser pointer and a moving to that location. Using a conic mirror and CCD camera sensor, a robot observes a spot of user wanted point among an initiative, computes the location and azimuth and moves to that position. This system offers the brief data to a processor with simple devices. In these reason, we can reduce the time of a calculation to process of images and find the target by user point for carrying a robot. User points a laser spot on a point to be moved so that this sensor system in the robot, detecting the laser spot point with a conic mirror, laid on the robot, showing a camera. The camera is attached on the robot upper body and fixed parallel to the ground and the conic mirror.

A Study on the Development of the Contents in Architectural Culture of the Historical City, GongJu (역사도시 공주의 건축문화 콘텐츠개발에 관한 연구)

  • Lee, Ho-Jung
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.10 no.2
    • /
    • pp.9-16
    • /
    • 2008
  • GongJu is a historical city. There has been scattered Baekje, Chosun and modern cultural heritages in GongJu. Cultural heritages in Baekje is simply preserved in their current condition. Chosun and modern cultural heritages have left their traces only, so that faded from the memory of the world. We must not lose the historical interconnectedness that is created by these heritages. This study is to analyze the architectural culture contents and its practical use program in urban side, and search for the strategy. The purpose of this study is as follows: The first is to retrieve the scattered heritages according to the age and area(as a spot). The second is to improve the street landscape through the linear linkage connecting from spot to spot.(as a line) The last is to create the image of historical city through the regional development.(as an area)

  • PDF

Target Positioning in Remote Area Using Strip Sensor Modeling of SPOT Imagery (SPOT 위성영상의 스트립 센서모델링을 이용한 비접근지역 위치결정 연구)

  • Kim, Man-Jo;Hwang, Chi-Jung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.155-160
    • /
    • 2012
  • In this paper, a strip modeling method is developed for the acquisition of target positions in remote area and validated using the imagery of SPOT satellite. This method utilizes the parameters given in header files and constructs a camera model without ground control points. In most cases, the root mean squared error of check points is less than pixel size with one ground control point. The model error of reference image is evaluated using ground control points and used to remove the model error of target images acquired along the same satellite orbit, which enables one to calculate target positions in remote area where no ground control points are available.

A Study on the Safety Diagnosis for Electric Power Systems Using Thermal Imaging Analysis (열화상 분석을 이용한 전력시스템의 안전진단에 관한 연구)

  • Yu, Byeong-Yeol;Kim, Chan-O
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.2
    • /
    • pp.26-31
    • /
    • 2011
  • In this paper, the safety diagnosis using thermal image analysis is described for power equipments. The conventional three-phase comparison method has only provided the results of thermal comparison for the equipments. The proposed method defines the conditions of poor connection by visual checks, and supports the criteria with each thermal rise step. As a result, the thermal difference from $5^{\circ}C$ to $10^{\circ}C$ meant the warning state. In addition, the thermal difference more than $10^{\circ}C$ meant that the connection status was unbalanced. In this case, the countermeasure might be the internal load distribution. If the thermal difference more than $20^{\circ}C$ is observed, it means a hot spot at the poor connection. If the hot spot is observed all over the surface, its cause was the unbalanced load, which made the conductive parts discolored and raised the possibility of oxidization or $Cu_2O$ generation. This diagnostic technology employing thermal image analysis method can be directly applied in the field and ensures the safety of equipments.

Accuracy analysis of the Orbit-based Sensor Modeling with various GCP configurations (기준점 배치에 따른 궤도기반 센서모델의 정확도 분석)

  • Kim, Dong-Wook;Kim, Hyun-Suk;Kim, Tae-Jung
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.207-212
    • /
    • 2008
  • 연구에서는 SPOT-3 인공위성 영상으로부터 얻어진 영상 스테레오 스트립과 GCP(Ground Control Point)자료를 이용하여 다양한 GCP배치에 따른 궤도기반 센서모델의 정확성에 대해 분석하였다. 실험에 사용된 기준점자료는 춘천지역에서부터 나주지역에 이르기 까지 약 420km 길이의 지역에 대해 GPS측량을 통해 획득하였다. 궤도기반 센서모델에 적용된 미지수는 위성의 위치와 속도, 자세를 표현하는 방정식의 계수를 미지수로 선택하여 일곱 가지 방식으로 조합하였다. 실험은 우선 모델점의 위치를 일곱 가지 경우로 결정하고 각 경우에 대해 일정한 개수의 모델점을 선택하였다. 그리고 각 경우의 모델점의 위치에 대해 궤도기반 센서모델의 미지수 조합 모델을 각 각 다르게 적용해 본 후 그 결과를 시각적, 수치적으로 분석해 보았다. 실험 결과 모델점의 위치에 관계 없이 궤도기반 모델에 적용할 수 있는 높은 정확도를 나타내는 미지수 조합모델을 찾아낼 수가 있었고, 여러 가지 모델점의 위치를 궤도기반 센서모델에 적용해 본 결과 지리적, 시간적, 경제적 효율성을 갖는 최적의 미지수 조합을 찾을 수가 있었다.

  • PDF

Evaluation of The Image Segmentation Method for DEM Generation of Satellite Imagery (위성영상의 DEM 생성을 위한 영상분할 방법의 적합성 평가)

  • 이효성;송정헌;김용일;안기원
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.2
    • /
    • pp.149-157
    • /
    • 2003
  • In this study, for efficient replacement of sensor modelling of high-resolution satellite imagery, image segmentation method is applied to the test area of the SPOT-3 satellite imagery. After that, a third-order polynomial model in the sectioned area is compared with the RFM which Is to the entire in the test area. As results, plane error of the third-order polynomial model is lower(approximately 0.8m) than that of RFM. On the other hand, height error of RFM is lower(approximately 1.0m).

Pseudo Image Composition and Sensor Models Analysis of SPOT Satellite Imagery of Non-Accessible Area (비접근 지역에 대한 SPOT 위성영상의 Pseudo영상 구성 및 센서모델 분석)

  • 방기인;조우석
    • Proceedings of the KSRS Conference
    • /
    • 2001.03a
    • /
    • pp.140-148
    • /
    • 2001
  • The satellite sensor model is typically established using ground control points acquired by ground survey Of existing topographic maps. In some cases where the targeted area can't be accessed and the topographic maps are not available, it is difficult to obtain ground control points so that geospatial information could not be obtained from satellite image. The paper presents several satellite sensor models and satellite image decomposition methods for non-accessible area where ground control points can hardly acquired in conventional ways. First, 10 different satellite sensor models, which were extended from collinearity condition equations, were developed and then the behavior of each sensor model was investigated. Secondly, satellite images were decomposed and also pseudo images were generated. The satellite sensor model extended from collinearity equations was represented by the six exterior orientation parameters in 1$^{st}$, 2$^{nd}$ and 3$^{rd}$ order function of satellite image row. Among them, the rotational angle parameters such as $\omega$(omega) and $\phi$(phi) correlated highly with positional parameters could be assigned to constant values. For non-accessible area, satellite images were decomposed, which means that two consecutive images were combined as one image. The combined image consists of one satellite image with ground control points and the other without ground control points. In addition, a pseudo image which is an imaginary image, was prepared from one satellite image with ground control points and the other without ground control points. In other words, the pseudo image is an arbitrary image bridging two consecutive images. For the experiments, SPOT satellite images exposed to the similar area in different pass were used. Conclusively, it was found that 10 different satellite sensor models and 5 different decomposed methods delivered different levels of accuracy. Among them, the satellite camera model with 1$^{st}$ order function of image row for positional orientation parameters and rotational angle parameter of kappa, and constant rotational angle parameter omega and phi provided the best 60m maximum error at check point with pseudo images arrangement.

  • PDF

Optical system design for recognition of human iris (홍채인식용 광학계 설계)

  • 홍경희
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.6
    • /
    • pp.390-394
    • /
    • 2000
  • An optical system for iris pattern recognition of the human eye is designed. The lens system is triplet type, and characterized to minimize longitudinal chromatic aberration and Petzval sum. The distance from object to image is 200 mm-300 mm and the effective focal length is 50 mm. Performance of the imaging system is assessed by calculating the ray-fan and spot diagram for Fraunhofer C, d and F line for object height 0 mm, 4 mm and 6 mm. Furthermore, MTFs are calculated. All of the spot sizes are less than 0.05 mm in diameter. The MTF values are higher than 0.5 in the spatial frequency range up to 20 lines/mm for all of the object heights. ights.

  • PDF