• Title/Summary/Keyword: SPME

Search Result 269, Processing Time 0.034 seconds

Determination of Volatile Fatty Acids in Aqueous Samples by HS-SPME with In-Fiber Derivatization (Fiber내 유도체화/HS-SPME를 이용한 수용액 시료 중 휘발성 지방산의 분석)

  • Ahn, Yun Gyong;Lee, Jee Yeon;Kim, Jeehyeong;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.458-465
    • /
    • 2003
  • The HS (headspace)-SPME (Solid phase microextraction) as rapid and simple method was performed for the determination of volatile fatty acids (VFAs) from the aqueous samples. In-fiber derivatization of VFAs with 1-Pyrenyldiazomethane (PDAM) was applied to improve their sensitivity of detection. In SPME procedure, typical parameters such as effects of solution pH, and salting out reagent and ultrasonication were investigated to improve the extraction efficiency. Based on the developed method, VFAs in wastewater samples were determined by gas chromatography / mass spectrometry-selected ion monitoring (GC/MS-SIM) mode.

Volatile Components Analysis using SPME in Traditional Aromatic Plant Resources, Zanthoxylum schinifolium Siebold et Zucc. and Z. piperitum DC (SPME법을 이용한 전통 향료 유전자원 산초 및 초피의 정유성분 분석)

  • Cho, Min-Gu;Chae, Young-Am;Song, Ji-Sook
    • Korean Journal of Medicinal Crop Science
    • /
    • v.9 no.3
    • /
    • pp.192-197
    • /
    • 2001
  • This study was carried out to select proper SPME fiber for volatile component analysis in Zanthoxylum schinifolium and Z. piperitum. PDMS, PDMS/DVB and CAR/PDMS were better for single standard absorption analysis. PDMS and PDMS/DVB showed similar results in comparison between direct injection and the mixture of 24 single standards as well as the mixture of 10 single standards. PDMS and PDMS/DVB were not different each other in absorption patterns between direct injection and headspace SPME regardless of split ratio of GC injection port. However PDMS/DVB rather than PDMS was effective in absorbing the sesquiterpenes within 30-40 minutes as using the SDE extracts from Z. schinifolium and Z. piperitum.

  • PDF

고체상 미량분석법(SPME)을 이용한 GC/FID에서의 BTEX 및 TCE 동시 분석

  • 이재선;장순웅;이시진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.405-408
    • /
    • 2003
  • The soild phase microextraction(SPME)fiber which contains 100${\mu}{\textrm}{m}$ polydimethyl siloxane of a stationary phase was used for the analysis of volatile organic compounds contained in aqueous solution. volatile organic compounds, which were spiked in blank water and extracted by the headspace SPME techique, were analyzed by gas chromatography/flame ionization detector(GC/FID). The optimu condition of SPME fiber is determined that the analytes were extracted for 40min from extracts by using PDAfS100${\mu}{\textrm}{m}$ fiber. This new method could have wide application for the analysis of VOCs in aqueous solution.

  • PDF

The Optimal Analytical Method for the Determination of PCE and TCE by GC/FID with SPME technieque (고체상미량분석법(SPME)을 이용한 GC/FID에서 PCE 및 TCE 최적 분석법)

  • Ahn Sang-Woo;Lee Si-Jin;Chang Soon-Woong
    • Journal of Environmental Science International
    • /
    • v.13 no.10
    • /
    • pp.903-909
    • /
    • 2004
  • A new method based on solid phase microextraction(SPME), coupled with GC/FID, has been developed for the determination of PCE and TCE in water samples. The experimental parameters affecting the SPME process (i.e, kinds of fibers, extraction time, desorption time, extraction temperature, volume ratio of sample to headspace, salt addition, and magnetic stirring) were optimized. The coefficients of determination ($R^2$) for PCE and TCE were 0.9951 and 0.9831, respectively when analytes concentration ranges from 10 to 300$\mu$g/L. The relative standard deviations were 3.4 and $2.1\%$ for concentration of 10$\mu$g/L(n=5), respectively. The detection limits of PCE and TCE were 0.5 and l.3$\mu$g/L, respectively.

Analysis of Volatile Organic Compounds in Kinnchi Absorbed in SPME by GC-AED and GC-MSD (SPME로 포집한 김치 휘발성분의 GC-AED및 GC-MSD에 의한 동정)

  • 하재호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.3
    • /
    • pp.543-545
    • /
    • 2002
  • The volatile compounds in kimchi adsorbed with solid phase microextraction (SPM) were analyzed by using a gas chromatograph-atomic emission detector (GC-AED) and a gas chromatograph-mass spectrometer (GC-MSD). The volatile compounds were effectively adsorbed in SPME. Twenty five compounds such as dimethyl-sulfide were identified by GC-MSD and some of these were further confirmed to contain a sulfur and a nitrogen by GC-AED.

Comparison of Volatile Flavor Compounds in Meat of the Blue Crab Using V-SDE and SPME Methods (V-SDE와 SPME법에 의한 꽃게(Portunus trituberculatus)육의 휘발성 향기성분 비교)

  • Cha, Yong-Jun;Cho, Woo-Jin;Jeong, Eun-Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.6
    • /
    • pp.441-446
    • /
    • 2006
  • Volatile flavor compounds in meat of the blue crab Portunus trituberculatus were compared using vacuum simultaneous steam distillation-solvent extraction (V-SDE) and solid phase microextraction (SPME)/ gas chromatography (GC)/ mass selective detection (MSD) methods. A total of 100 volatile flavor compounds were identified by both methods: 77 by V-SDE and 59 by SPME. These compounds were composed of 17 aldehydes, 12 ketones, 19 alcohols, 5 esters, 4 sulfur-containing compounds, 6 nitrogen-containing compounds, 23 aromatic compounds, 6 hydrocarbons, 2 terpenes, and 6 miscellaneous compounds. Although more compounds were detected using V-SDE than using SPME, the levels of all groups detected, except esters, were higher using SPME than using V-SDE. In addition to trimethylamine, aldehydes, and aromatic compounds, the S- and N-containing compounds with low thresholds are thought to have positive roles for flavors in the meat of the blue crab.

Effect of Residual Chlorine on the Analysis of Geosmin and 2-MIB Using SPME (Solid Phase Microextraction) (SPME를 이용한 Geosmin과 2-MIB분석 시 잔류염소의 영향에 관한 연구)

  • Kim, Sung-Jin;Hong, Seong-Ho;Min, Dal-Ki
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.713-719
    • /
    • 2005
  • SPME (Soild phase microextraction) has been used in the analysis of many volatile organic compounds, such as geosmin and 2-methylisoborneol (2-MIB), trihalomethanes (THMs) in drinking water. SPME fiber is characterized by high adsorption capacity (DVB/CAR/PDMS, DVB/PDMS etc.). Although the highly active adsorption capacities of the SPME fiber are often to the chemical functional group, surface properties play a significant role in determining the surface adsorption capacities. The objectives of this study were to evaluate effect of residual chlorine on analysis of geosmin and 2-MIB. Image taken by SEM before preloaded with chlorine, the surface and porous media was almost perfect spherical shape and no clogging of pores. However, after preloaded with chlorine the surface was aggregated and pore was blocked. The recovery rate of geosmin and 2-MIB coexisting with chlorine was reduced by 35 to 62%. The recovery rate with preloaded with chlorine was reduced by 25 to 43%. The lower concentration of geosmin and 2-MIB and the higher concentration of chlorine existed in water, the lower the recovery rate was.

Correlation between SPME-GC Analysis and the Aroma Intensity for Ginseng Volatiles (SPME-GC를 이용한 인삼의 향분석과 관능강도와의 상관관계)

  • Ryu, Sung-Kwon;Roh, Jin-Chul;Park, Hoon;Park, Sung-Kook
    • Journal of Ginseng Research
    • /
    • v.26 no.4
    • /
    • pp.206-212
    • /
    • 2002
  • Ginsengs grown fur six years at different locations were harvested and prepared for white and red ginsengs. These fresh, white, red, and other ginsengs purchased from domestic and foreign countries were analyzed for their volatile compounds by solid phase microextraction-gas chromatography (SPME-GC) and SPME-GC/mass spectrometery (MS). The intensity of the ginseng volatiles perceived by nose was also measured in order to correlate the intensity with the corresponding GC analysis. Good correlations were obtained between the GC peak area and the degree of intensity evaluated by sensory panelists, indication that a reliable and objective evaluation of the aroma intensity of ginsengs by a simple GC analysis is possible.

Determination of DBCP and n-Butylbenzene using SPME with GC-MS (SPME-GC-MS를 이용한 DBCP 및 n-Butylbenzene의 분석)

  • Park, Hyun-Mee;Kim, Young-Man;Lee, Dai-Woon;Lee, Kang-Bong
    • Analytical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.471-475
    • /
    • 2001
  • Solid phase microextraction(SPME) with $85{\mu}m$-polyacrylate (PA) and $100{\mu}m$-polydimethylsiloxane(PDMS) fibers, coupled to gas chromatography-mass spectrometry was used to determine 1,2-dibromo-3-chloropropane(DBCP) and n-butylbenzene in water. The conditions affecting the SPME process(i.e, extraction time, injection length, injection temperature, desorption time and temperature) were optimized. The linearity of the calibration curve (correlation coefficient, R) was over 0.99 and the limits of detection of the method were between 1.5 and $10.8{\mu}g/L$. Repeatability of the method was between 10.4 and 14.4 %.

  • PDF

Analysis of the composition of trail pheromone secreted from live Camponotus japonicus by HS-SPME GC/MS (HeadSpace-Solid Phase MicroExtraction Gas Chromatography/Mass Spectrometry) (HS-SPME GC/MS법을 이용한 일본왕개미의 trail pheromone 성분 분석)

  • Park, Kyung-Eun;Lee, Dong-Kyu;Kwon, Sung Won;Lee, Mi-Young
    • Analytical Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.292-299
    • /
    • 2012
  • GC/MS has been utilized for many applications due to great resolution and reproducibility, which made it possible to build up the database of mass spectrum, while HS-SPME has the advantage of solventfree extraction of volatile compounds. The combination of these two methods, HS-SPME GC/MS, enabled many scientific applications with various possibilities. In this study, the analysis of trail pheromone excreted from live Camponotus japonicus with the feature of solvent-free extraction was carried out and the optimization for this analysis was performed. The major compounds detected were n-decane, n-undecane, and n-tridecane. Optimization for the best detection of these hydrocarbons was processed in the point of SPME parameter (selection of fiber, extraction temperature, extraction time, etc.). The advantage of the analysis of live sample is to analyze phenomenon right after it is excreted by ants. But the experimental process has restriction of extraction temperature and time because of the analysis of live ants. Establishing the process of HS-SPME GC/MS applied to live samples shown in this study can be a breakthrough for the ecofriendly and ethical research of live things.