• Title/Summary/Keyword: SPM machines

Search Result 8, Processing Time 0.02 seconds

Analytical Performance Modelling of Slotted Surface-Mounted Permanent Magnet Machines with Rotor Eccentricity

  • Yan, Bo;Wang, Xiuhe;Yang, Yubo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.778-789
    • /
    • 2017
  • This paper presents an improved subdomain method to predict the magnet field distributions and electromagnetic performance of the surface-mounted permanent magnet (SPM) machines with static or dynamic eccentricity. Conventional subdomain models are either based on the scalar magnet potential to predict the rotor eccentricity effect or dependent on the magnetic vector potential without considering the eccentric rotor. In this paper, both the magnetic vector potential and the perturbation theory are introduced in order to accurately calculate the effect of rotor eccentricity on the open-circuit and armature reaction performance. The calculation results are presented and validated by the corresponding finite-element method (FEM) results.

Eddy-Current Loss Analysis in Rotor of Surface-Mounted Permanent Magnet Machines Using Analytical Method (해석적 방법을 이용한 표면부착형 영구자석 기기의 회전자 와전류 손실해석)

  • Choi, Jang-Young;Choi, Ji-Hwan;Jang, Seok-Myeong;Cho, Han-Wook;Lee, Sung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1115-1122
    • /
    • 2012
  • This paper analyzes eddy-current loss induced in magnets of surface-mounted permanent magnet (SPM) machines by using an analytical method such as a space harmonic method. First, on the basis of a two-dimensional (2D) polar coordinate system and a magnetic vector potential, the analytical solutions for the flux density produced by armature winding current are obtained. By using derived field solutions, the analytical solutions for eddy current density distribution are also obtained. Finally, analytical solutions for eddy current loss induced in rotor magnets are derived by using equivalent electrical resistance calculated from magnet volume and analytical solutions for eddy-current density distribution. In particular, the influence of time harmonics in armature current on the eddy current loss is fully investigated and discussed. All analytical results are validated extensively by finite element analysis (FEA).

Analytical Calculation for Predicting the Air Gap Flux Density in Surface-Mounted Permanent Magnet Synchronous Machine

  • Feng, Yan-li;Zhang, Cheng-ning
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.769-777
    • /
    • 2017
  • The research of air gap flux density has a significant effect on predicting and optimizing the structure parameters of electrical machines. In the paper, the air gap coefficient, leakage flux factor and saturation coefficient are first analytically expressed in terms of motor properties and structure parameters. Subsequently, the analytical model of average air gap flux density for surface-mounted permanent magnet synchronous machines is proposed with considering slotting effect and saturation. In order to verify the accuracy of the proposed analytical model, the experiment and finite element analysis (FEA) are used. It shows that the analytical results keep consistency well with the experimental result and FEA results, and the errors between FEA results and analytical results are less than 5% for SPM with high power. Finally, the analytical model is applied to optimizing the motor structure parameters. The optimal results indicate that the analytical calculation model provides a great potential to the machine design and optimization.

Permanent Magnet Eddy Current Analysis of SPM Synchronous Motors according to Magnet Shapes

  • Lee, Sun-Kwon;Kang, Gyu-Hong;Kim, Byoung-Woo;Hur, Jin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.398-402
    • /
    • 2014
  • This paper presents the comparison study of permanent magnet (PM) eddy current of concentrated winding type surface permanent magnet synchronous motor (SPMSM) with different rare-earth magnet shapes. The fractional slot winding having 10 poles and 12 slots is studied. The PM eddy current is analyzed to compare for each shape by 2 dimensional (2D) finite element analysis (FEA). The eddy current and their loss of particular position of PM as well as their distributions are displayed for each model. The effect of partly enlarged air-gap made by PM shape to PM eddy current is compared.

Design of Surface Permanent Magnet-type Vernier Motor

  • Kakihata, Hironori;Kataoka, Yasuhiro;Takayama, Masakazu;Matsushima, Yoshitarou;Anazawa, Yoshihisa
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.127-133
    • /
    • 2013
  • In this paper, the authors designed a surface permanent magnet (SPM)-type vernier motor whose maximum output is more than 5.2 kW, whose power factor at 4 kW is more than 90%, and whose efficiency at 4 kW is 85% under the conditions that the operating voltage, frequency, and synchronous speed are 400 V, 50 Hz, and 100 min-1, respectively.

The design of high-capacity BLDC motor with maximum torque in low speed (저속영역에서 최대 토크 발생이 가능한 대용량 BLDC 모터의 설계)

  • Cho S.H.;Kim C.U.;Bin J.G.;Cho S.E.;Choi C.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.824-827
    • /
    • 2003
  • Recently, Development of Rare Earth Permanent magnet with the high remanence, high coercivity allow the design of brushless motors with very high efficiency over a wide speed range. Cogging torque is produced in a permanent magnet by magnetic attraction between the rotor mounted permanent magnet and the stator teeth. It is an undesired effect that contributes to the machines output ripple, vibration, and noise. This cogging torque can be reduced by variation of magnet arc length, airgap length, magnet thickness, shifting the magnetic pole and varying the radial shoe depth and etc. In this paper, Some airgap length and magnet arc that reduce cogging torque are found by FEM(Finite element method). The SPM type of high-capacity BLDC motor is optimized as a sample model.

  • PDF

Pulse TIG welding: Process, Automation and Control

  • Baghel, P.K.;Nagesh, D.S.
    • Journal of Welding and Joining
    • /
    • v.35 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • Pulse TIG (Tungsten Inert Gas) welding is often considered the most difficult of all the welding processes commonly used in industry. Because the welder must maintain a short arc length, great care and skill are required to prevent contact between the electrode and the workpiece. Pulse TIG welding is most commonly used to weld thin sections of stainless steel, non-ferrous metals such as aluminum, magnesium and copper alloys. It is significantly slower than most other welding techniques and comparatively more complex and difficult to master as it requires greater welder dexterity than MIG or stick welding. The problems associated with manual TIG welding includes undercutting, tungsten inclusions, porosity, Heat affected zone cracks and also the adverse effect on health of welding gun operator due to amount of tungsten fumes produced during the welding process. This brings the necessity of automation. Hence, In this paper an attempt has been made to build a customerized setup of Pulse TIG welding based on through review of Pulse TIG welding parameters. The cost associated for making automated TIG is found to be low as compared to SPM (Special Purpose machines) available in the market.

A Study on Vibration and Noise through Finite Element Analysis of Large High Speed Press (대형 고속프레스의 유한요소해석을 통한 진동 및 소음에 대한 연구)

  • Seung-Soo Kim;Chul-Jae Jung;Chun-Kyu Lee
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.14-23
    • /
    • 2023
  • The electric vehicle market is developing rapidly around the world. Also, parts of electric vehicles require precision.In order to produce high-precision motor cores,Press equipment must also have good precision. Drive motor cores are an important technology for electric vehicles. It uses a large high-speed press to mass-produce drive motor cores. Because it's a large high-speed press, there are many reasons why the precision is not good. One of the causes is vibration and noise. Recently, as environmental demands have become stricter, regulations on noise and vibration have been strengthened. It is important for press machines to reduce vibration first for sound insulation and dust proofing. This is because the "breakthrough" phenomenon occurs in the press. Dynamic precision is the precision under the load of the press, Design considering strain and stiffness shall be made. Vibration and noise may occur due to SPM of high-speed press,And vibration and noise can cause structural deformation of the press. Structural deformation of the press can affect the precision of the product.Noise and vibration also cause problems for workers and work environments. Problems with vibration and noise occur during press processing, and vibration and noise lead to damage to the mold or defects in the product. Reliability in high-quality technology must be secured with low noise and low vibration during press processing. Modular shape and deformation energy effects were analyzed through finite element analysis. In this study, a study on vibration and noise countermeasures was conducted through finite element analysis of a large high-speed press.