• Title/Summary/Keyword: SPIN EFFECT

Search Result 738, Processing Time 0.027 seconds

Spin orbit torque detected by spin torque FMR in W/CoFeB bilayer

  • Kim, Changsoo;Moon, Kyoung-Woong;Chun, Byong Sun;Kim, Dongseok;Hwang, Chanyong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.2
    • /
    • pp.46-50
    • /
    • 2019
  • Spin orbit torque would be applied as the next generation of MRAM, so many researchers are interested in related field. To make a more efficient device, electric current should convert into spin current with high efficiency. Moreover, it becomes important to measure efficiency of spin orbit torque accurately. We measured spin torque FMR of W/CoFeB hetero structure system with direct current. The efficiencies of the damping like torque and field like torque were measured by using the linewidth and on-resonance field proportional to direct current. In addition, we analyzed that a quadratic shift of the on-response field was caused by the Joule heating.

Effect of in-Plane Magnetic Field on Rashba Spin-Orbit Interaction

  • Choi, Won Young;Kwon, Jae Hyun;Chang, Joonyeon;Han, Suk Hee;Koo, Hyun Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.394-394
    • /
    • 2013
  • The spin-orbit interaction has received great attention in the field of spintronics, because of its property and applicability. For instance, the spin-orbit interaction induces spin precession which is the key element of spin transistor proposed by Datta and Das, since frequency of precession can be controlled by electric field. The spin-orbit interaction is classified according to its origin, Dresselhaus and Rashba spin-orbit interaction. In particular, the Rashba spin-orbit interaction is induced by inversion asymmetry of quantum well structure and the slope of conduction band represents the strength of Rashba spin-orbit interaction. The strength of spin-orbit interaction is experimentally obtained from the Shubnikov de Hass (SdH) oscillation. The SdH oscillation is resistance change of channel for perpendicular magnetic field as a result of Zeeman spin splitting of Landau level, quantization of cyclotron motion by applied magnetic field. The frequency of oscillation is different for spin up and down due to the Rashba spin-orbit interaction. Consequently, the SdH oscillation shows the beat patterns. In many research studies, the spin-orbit interaction was treated as a tool for electrical manipulation of spin. On the other hands, it can be considered that the Rashba field, effective magnetic field induced by Rashba effect, may interact with external magnetic field. In order to investigate this issue, we utilized InAs quantum well layer, sandwiched by InGaAs/InAlAs as cladding layer. Then, the SdH oscillation was observed with tilted magnetic field in y-z plane. The y-component (longitudinal term) of applied magnetic field will interact with the Rashba field and the z-component (perpendicular term) will induce the Zeeman effect. As a result, the strength of spin-orbit interaction was increased (decreased), when applied magnetic field is parallel (anti-parallel) to the Rashba field. We found a possibility to control the spin precession with magnetic field.

  • PDF

스핀트로닉스 소재로 사용될 수 있는 HgCdTe의 물리적 성질 : Rashbar effect 와 Zeeman spin splitting

  • 홍진기;이진서;이긍원;안세영;이제형;김진상;이병찬
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.32-33
    • /
    • 2002
  • 최근 세계적 주목을 받고 있는 spin FET[1] 소자의 구현은 강자성 물질에 의하여 반도체에 주입된 spin 편향된 전자가 반도체 계면에 유도된 전기장의 영향을 받아 spin-orbit interaction을 하는 mechanism(Rashbar effect)이 근간을 이루고 있다. 작은 band gap을 가지는 반도체(narrow gap 반도체)는 작은 유효질량의 전자에 의해서 이러한 Rashbar effect[2]를 크게 할 수 있는 물질로서, spin FET 구현을 위한 강력한 후보이며, 요즘 한창 연구되고 있는 주제이기도 하다[3]. (중략)

  • PDF

Spin Transport in a Ferromagnet/Semiconductor/Ferromagnet Structure: a Spin Transistor

  • Lee, W.Y;Bland, J.A.C
    • Journal of Magnetics
    • /
    • v.7 no.1
    • /
    • pp.4-8
    • /
    • 2002
  • The magnetoresistance (MR) and the magnetization reversal of a lateral spin-injection device based on a spin-polarized field effect transistor (spin FET) have been investigated. The device consists of a two-dimensional electron gas (2DEG) system in an InAs single quantum well (SQW) and two ferromagnetic $(Ni_{80}Fe_{20})$ contacts: all injector (source) and a detector (drain). Spin-polarized electrons are injected from the first contact and, after propagating through the InAs SQW are collected by the second contact. By engineering the shape of the permalloy contacts, we were able to observe distinct switching fields $(H_c)$ from the injector and the collector by using scanning Kerr microscopy and MR measurements. Magneto-optic Kerr effect (MOKE) hysteresis loops demonstrate that there is a range of magnetic field (20~60 Oe), at room temperature, over which the magnetization in one contact is aligned antiparallel to that in the other. The MOKE results are consistent with the variation of the magnetoresistance in the spin-injection device.

Spin Valve Effect in Lateral Py/Au/Py Devices

  • Ku, Jang-Hae;Chang, Joon-Yeon;Koo, Hyun-Cheol;Eom, Jong-Hwa;Han, Suk-Hee;Kim, Gyu-Tae
    • Journal of Magnetics
    • /
    • v.12 no.4
    • /
    • pp.152-155
    • /
    • 2007
  • Spin dependent transport was investigated in lateral $Py(Ni_{81}Fe_{19})/Au/Py$ spin valve devices. Clear spin valve effect was observed in conventional four-terminal measurement geometry. Higher resistance was found in antiparallel magnetization field of two Py electrodes which is determined by anisotropy magnetoresistance (AMR) measurements. The rectangular shape of spin signal together with good agreement of switching field convinces observed spin valve signal is resulted from effective spin injection and detection. The magnetoresistance ratio decays exponentially with channel length by which spin diffusion length of Au channel was estimated to be 76 nm.

Electron spin relaxation control in single electron QDs

  • Mashayekhi, M.Z.;Abbasian, K.;Shoar-Ghaffari, S.
    • Advances in nano research
    • /
    • v.1 no.4
    • /
    • pp.203-210
    • /
    • 2013
  • So far, all reviews and control approaches of spin relaxation have been done on lateral single electron quantum dots. In such structures, many efforts have been done, in order to eliminate spin-lattice relaxation, to obtain equal Rashba and linear Dresselhaus parameters. But, ratio of these parameters can be adjustable up to 0.7 in a material like GaAs under high-electric field magnitudes. In this article we have proposed a single electron QD structure, where confinements in all of three directions are considered to be almost identical. In this case the effect of cubic Dresselhaus interaction will have a significant amount, which undermines the linear effect of Dresselhaus while it was destructive in lateral QDs. Then it enhances the ratio of the Rashba and Dresselhaus parameters in the proposed structure as much as required and decreases the spin states up and down mixing and the deviation angle from the net spin-down As a result to the least possible value.

Gate-Controlled Spin-Orbit Interaction Parameter in a GaSb Two-Dimensional Hole gas Structure

  • Park, Youn Ho;Koo, Hyun Cheol;Shin, Sang-Hoon;Song, Jin Dong;Kim, Hyung-Jun;Chang, Joonyeon;Han, Suk Hee;Choi, Heon-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.382-383
    • /
    • 2013
  • Gate-controlled spin-orbit interaction parameter is a key factor for developing spin-Field Effect Transistor (Spin-FET) in a quantum well structure because the strength of the spin-orbit interaction parameter decides the spin precession angle [1]. Many researches show the control of spin-orbit interaction parameter in n-type quantum channels, however, for the complementary logic device p-type quantum channel should be also necessary. We have calculated the spin-orbit interaction parameter and the effective mass using the Shubnikov-de Haas (SdH) oscillation measurement in a GaSb two-dimensional hole gas (2DHG) structure as shown in Fig 1. The inset illustrates the device geometry. The spin-orbit interaction parameter of $1.71{\times}10^{11}$ eVm and effective mass of 0.98 $m^0$ are obtained at T=1.8 K, respectively. Fig. 2 shows the gate dependence of the spin-orbit interaction parameter and the hole concentration at 1.8 K, which indicates the spin-orbit interaction parameter increases with the carrier concentration in p-type channel. On the order hand, opposite gate dependence was found in n-type channel [1,2]. Therefore, the combined device of p- and n-type channel spin transistor would be a good candidate for the complimentary logic device.

  • PDF

Particle Dispersion and Effect of Spin in the Turbulent Boundary Layer Flow (난류 경계층 유동에서 입자의 확산과 스핀의 영향)

  • Kim, Byung-Gu;Lee, Chang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.89-98
    • /
    • 2004
  • In this paper, we develope a dispersion model based on the Generalized Langevin Model. Thomson's well-mixed condition is the well known criterion to determine particle dispersion. But, it has 'non-uniqueness problem'. To resolve this, we adopt a turbulent model which is a new approach in this field of study. Our model was greatly simplified under the self-similarity condition, leaving model only two model constants $C_{0}$ and ${\gamma}$$_{5}$ that control the dispersion and spin which measures rotational property of the Lagrangian particle trajectory. We investigated the sign of spin as well as magnitude by using the Direct Numerical Simulation. Model calculations were performed on the neutrally stable boundary layer flow. We found that spin has weak effect on the particle dispersion but it shows the significant effect on the horizontal flux compared to the zero-spin model.

Study on the Fluid Film Thickness and Pressure of Elliptical Elastohydrodynamic Lubrication with Spin Effect for the Power Transmitting Contact in the Continuously Variable Transmission (무단 변속기의 동력전달 접촉에서 회전운동을 고려한 타원형상의 점접촉 탄성유체윤활연구)

  • Jang, Si-Youl
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.272-277
    • /
    • 2005
  • Continuously variable transmission (CVT) of toroidal type has a elliptical shape of contact zone under the elastohydrodynamic lubrication (EHL) condition, where the power is transmitted only by shearing the lubricant. Due to the small contact area of elliptical shape, the traction of the shear behaviors of lubricant over the contact zone is under extremely high contact pressure over 1.0GPa. During the power transmission by shearing the fluid, many kinds of mechanical movements occur such as squeezing, sliding, rolling and spin. Among the movements, the spin effect that is the most undesirable contact behavior in transmitting the power frequently makes significant abnormal wear damage. In this work, the analysis of elliptical contact of EHL with spin effect is performed, which will give very useful information to understand the traction behaviors in toroidal type of CVT system.

The Effect of the Ligand's Spin-Orbit Coupling on the Zero-Field Splitting in the Low Spin Octahedral Ti(Ⅲ), V(Ⅲ), Fe(Ⅲ) and Ni(Ⅱ) Complexes (리간드의 Spin-Orbit Coupling이 작은 스핀팔면체 Ti(Ⅲ), V(Ⅲ), Fe(Ⅲ) 및 Ni(Ⅱ) 착물의 Zero-Field Splitting에 미치는 영향)

  • Ahn Sangwoon;Lee Kee Hag
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.65-74
    • /
    • 1979
  • An effect of the spin-orbit coupling interaction of ligand orbitals on the ground state for octahedral $[Ti(Ⅲ)A_3B_3]$, $ [V(Ⅲ)A_3B_3]$, $ [Fe(Ⅲ)A_3B_3]$ and $ [Ni(Ⅱ)A_3B_3]$ type complexes has been investigated in this work, applying the degenerate perturbation theory. The wave functions are not affected but the energy level splitting for the ground state of these complexes by the spin-orbit coupling interaction of ligand orbitals. The extent of effect on the energy level splitting for the ground state is decreased in order Ti(Ⅲ) > V(Ⅲ) > Fe(Ⅲ).

  • PDF