• Title/Summary/Keyword: SPH technique

Search Result 30, Processing Time 0.026 seconds

Anchor Collision Simulation of Rock-berm using SPH Technique (SPH 기법을 이용한 Rock-berm의 앵커 충돌 수치 시뮬레이션)

  • Woo, Jinho;Na, Won-Bae;Yu, Jeong-Seok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.1
    • /
    • pp.9-15
    • /
    • 2014
  • It is not easy to analyze the behavior of a structural body composed of particles such as rocks using the finite element method facilitating typical element meshes because we cannot ignore the interactions among particles. In the study, we investigated the applicability of smooth particle hydrodynamics (SPH) element method for collision analysis of rock-berm by comparison with the conventional Lagrange method. As the result, SPH technique is expected to be capable of realistic simulation under collision analysis of material composed of particles.

A Study on the Kinetic Energy and Dispersion Behavior of High-velocity Impact-induced Debris Using SPH Technique (SPH 기법을 이용한 고속충돌 파편의 운동에너지와 분산거동 연구)

  • Sakong, Jae;Woo, Sung-Choong;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.457-467
    • /
    • 2016
  • In this study, we investigate the dispersion behavior of debris and debris cloud generated by high-velocity impacts using the smoothed particle hydrodynamics (SPH) technique. The projectile and target plate were made of aluminum, and we confirm the validity of the SPH technique by comparing the measured major and minor axis lengths of the debris cloud in the reference with the predicted values obtained through the SPH analysis. We perform high-velocity impact and fracture analysis based on the verified SPH technique within the velocity ranges of 1.5~4 km/s, and we evaluate the dispersion behavior of debris induced by the impact in terms of its kinetic energy. The maximum dispersion radius of the debris on the witness plates located behind the target plate was increased with increasing impact velocity. We derive an empirical equation that is capable of predicting the dispersion radius, and we found that 95% of the total kinetic energy of the debris was concentrated within 50% of the maximum dispersion radius.

A Study of Normalized Smoothed Particle Hydrodynamics (정규 완화입자유동법의 고찰)

  • 박정수;이진성;박희덕;김용석;이재민
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.89-99
    • /
    • 2003
  • Smoothed particle hydrodynamics, SPH, is a gridless Lagrangian technique which is a useful alternative numerical analysis method to simulate high velocity deformation problems as well as astrophysical and cosmological problems. The SPH method brings about some difficulties such as tensile Instability and stress oscillation. A new SPH method, so called normalized algorithm, was introduced to overcome these difficulties. In this paper we aimed to estimate this method and have developed an one-dimensional normalized SPH program. The high velocity impact model of an aluminum bar has been analysed by using the developed program and a commercial hydrocode, LS-DYNA. The obtained numerical results showed good agreement with the results of the same model in reference. The program also showed more stable results than those of LS-DYNA in stress oscillation. We hopefully expect that the developed one-dimensional normalized SPH program can be used to solve hydrodynamic problems especially for explosive detonation analysis.

Quadrangular Splatting based on SPH (SPH 기반의 사각 스플렛팅 가시화 기법)

  • Shin, Seung-Ho;Yoon, Jong-Chul;Lee, Jung;Kim, Chang-Hun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.14 no.4
    • /
    • pp.27-33
    • /
    • 2008
  • Physics-based graphic techniques are used when simulating and rendering natural phenomena such as smoke, water and flame with computational physics. We propose novel methods which render simulated particle data fast onto 3D using tetrahedron splat. We calculate the position and the normal vector of splat by SPH(smoothed particle hydrodynamics) method then we reconstruct splat into quadrangular pyramid to reduce seam. We implement this technique for SPH fluid simulation, and animate natural flow of water successfully.

  • PDF

A Syudy on Applications of Convex Hull Algorithm in the SPH (SPH에서의 Convex Hull 알고리즘 적용연구)

  • Lee, Jin-Sung;Lee, Young-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.313-320
    • /
    • 2011
  • SPH(Smoothed Particle Hydrodynamics) is a gridless Lagrangian technique that is useful as an alternative numerical analysis method used to analyze high deformation problems as well as astrophysical and cosmological problems. In SPH, all points within the support of the kernel are taken as neighbours. The accuracy of the SHP is highly influenced by the method for choosing neighbours from all particle points considered. Typically a linked-list method or tree search method has been used as an effective tool because of its conceptual simplicity, but these methods have some liability in anisotropy situations. In this study, convex hull algorithm is presented as an improved method to eliminate this artifact. A convex hull is the smallest convex set that contains a certain set of points or a polygon. The selected candidate neighbours set are mapped into the new space by an inverse square mapping, and extract a convex hull. The neighbours are selected from the shell of the convex hull. These algorithms are proved by Fortran programs. The programs are expected to use as a searching algorithm in the future SPH program.

Damage identification of masonry arch bridge under blast loading using smoothed particle hydrodynamics (SPH) method

  • Amin Bagherzadeh Azar;Ali Sari
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.103-121
    • /
    • 2024
  • The smoothed particle hydrodynamics (SPH) method is a numerical technique used in dynamic analysis to simulate the fluid-like behavior of materials under extreme conditions, such as those encountered in explosions or high velocity impacts. In SPH, fluid or solid materials are discretized into particles. These particles interact with each other based on certain smoothing kernels, allowing the simulation of fluid flows and predict the response of solid materials to shock waves, like deformation, cracking or failure. One of the main advantages of SPH is its ability to simulate these phenomena without a fixed grid, making it particularly suitable for analyzing complex geometries. In this study, the structural damage to a masonry arch bridge subjected to blast loading was investigated. A high-fidelity micro-model was created and the explosives were modeled using the SPH approach. The Johnson-Holmquist II damage model and the Mohr-Coulomb material model were considered to evaluate the masonry and backfill properties. Consistent with the principles of the JH-II model, the authors developed a VUMAT code. The explosive charges (50 kg, 168 kg, 425 kg and 1000 kg) were placed in close proximity to the deck and pier of a bridge. The results showed that the 50 kg charges, which could have been placed near the pier by a terrorist, had only a limited effect on the piers. Instead, this charge caused a vertical displacement of the deck due to the confinement effect. Conversely, a 1000 kg TNT charge placed 100 cm above the deck caused significant damage to the bridge.

High Density Crowd Simulation based on SPH (Smoothed Particle Hydrodynamics 기반 고 밀집 군중 시뮬레이션 기법)

  • Kang, Shin-Jin;Lee, Jung;Kim, Soo-Kyun
    • Journal of Korea Game Society
    • /
    • v.11 no.6
    • /
    • pp.193-199
    • /
    • 2011
  • Producing high density crowd simulation is time-consuming task as increasing the number of individuals in the crowds. In this paper, we propose a new control technique that can create realistic high density crowd simulation by using Smoothed Particle Hydrodynamics (SPH) method from fluid simulation field. Equations in SPH method are modified for evacuation, distance maintenance, and group maintenance forces for individual behaviors in the crowds. Experimental results showed that the proposed system could enable natural high density crowd simulation efficiently.

Application of mesh-free smoothed particle hydrodynamics (SPH) for study of soil behavior

  • Niroumand, Hamed;Mehrizi, Mohammad Emad Mahmoudi;Saaly, Maryam
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-39
    • /
    • 2016
  • The finite element method (FEM), discrete element method (DEM), and Discontinuous deformation analysis (DDA) are among the standard numerical techniques applied in computational geo-mechanics. However, in some cases there no possibility for modelling by traditional finite analytical techniques or other mesh-based techniques. The solution presented in the current study as a completely Lagrangian and mesh-free technique is smoothed particle hydrodynamics (SPH). This method was basically applied for simulation of fluid flow by dividing the fluid into several particles. However, several researchers attempted to simulate soil-water interaction, landslides, and failure of soil by SPH method. In fact, this method is able to deal with behavior and interaction of different states of materials (liquid and solid) and multiphase soil models and their large deformations. Soil indicates different behaviors when interacting with water, structure, instrumentations, or different layers. Thus, study into these interactions using the mesh based grids has been facilitated by mesh-less SPH technique in this work. It has been revealed that the fast development, computational sophistication, and emerge of mesh-less particle modeling techniques offer solutions for problems which are not modeled by the traditional mesh-based techniques. Also it has been found that the smoothed particle hydrodynamic provides advanced techniques for simulation of soil materials as compared to the current traditional numerical methods. Besides, findings indicate that the advantages of applying this method are its high power, simplicity of concept, relative simplicity in combination of modern physics, and particularly its potential in study of large deformations and failures.

The Contact and Parallel Analysis of Smoothed Particle Hydrodynamics (SPH) Using Polyhedral Domain Decomposition (다면체영역분할을 이용한 SPH의 충돌 및 병렬해석)

  • Moonho Tak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.4
    • /
    • pp.21-28
    • /
    • 2024
  • In this study, a polyhedral domain decomposition method for Smoothed Particle Hydrodynamics (SPH) analysis is introduced. SPH which is one of meshless methods is a numerical analysis method for fluid flow simulation. It can be useful for analyzing fluidic soil or fluid-structure interaction problems. SPH is a particle-based method, where increased particle count generally improves accuracy but diminishes numerical efficiency. To enhance numerical efficiency, parallel processing algorithms are commonly employed with the Cartesian coordinate-based domain decomposition method. However, for parallel analysis of complex geometric shapes or fluidic problems under dynamic boundary conditions, the Cartesian coordinate-based domain decomposition method may not be suitable. The introduced polyhedral domain decomposition technique offers advantages in enhancing parallel efficiency in such problems. It allows partitioning into various forms of 3D polyhedral elements to better fit the problem. Physical properties of SPH particles are calculated using information from neighboring particles within the smoothing length. Methods for sharing particle information physically separable at partitioning and sharing information at cross-points where parallel efficiency might diminish are presented. Through numerical analysis examples, the proposed method's parallel efficiency approached 95% for up to 12 cores. However, as the number of cores is increased, parallel efficiency is decreased due to increased information sharing among cores.

Smoothed Particle Hydrodynamics Code Basics

  • MONAGHAN J. J.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.203-207
    • /
    • 2001
  • SPH is the shorthand for Smoothed Particle Hydrodynamics. This method is a Lagrangian method which means that it involves following the motion of elements of fluid. These elements have the characteristics of particles and the method is called a particle method. A useful review of SPH (Monaghan 1992) gives the basic technique and how it can be applied to numerous problems relevant to astrophysics. You can get some basic SPH programs from http) /www.maths.monash.edu.au/jjm/sphlect In the present lecture I will assume that the student has studied this review and therefore understands the basic principles. In today's lecture I plan to approach the equations from a different perspective by using a variational principle.

  • PDF