• Title/Summary/Keyword: SPDT switch

Search Result 36, Processing Time 0.025 seconds

Design of Broadband FET Switch Using Drain Impedance Transformation Network (드레인 임피던스 변환회로를 이용한 광대역 FET 스위치 설계)

  • Choi, Won;No, Hee-Jung;Oh, Chung-Kyun;Koo, Kyung-Heon
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.60-63
    • /
    • 2003
  • This paper describes the design and the simulation of a V-band single pole double throw (SPDT) FET switch fur millimeter-wave applications using drain impedance transformation network with CPW transmission line. The designed switch has about 10% bandwidth at 60GHz. Insertion loss is better than 3dB fur the ON state and Isolation is larger than 30dB fer the OFF state. The maximum isolation is 43.4dB at 60GHz with input power of 10dBm. The yield analysis is done considering the effects of pHEMT variations.

  • PDF

A Study on design of the Ferroelectrics Cantilever for RF Switch (RF Switch용 강유전체 Cantilever 설계에 관한 연구)

  • Kim, In-Sung;Min, Bok-Ki;Song, Jae-Sung;Muller, A.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.652-655
    • /
    • 2004
  • RF MEMS is a miniature device or an array of integration devices and mechanical components and fabricated with If batch-processing techniques. RF MEMS application area are in phased arrays and reconfigurable apertures for defence and telecommunication systems, switching network for satellite communication, and single-pole double throw switches for wireless application. Recently, RF MEMS switches have been developed for the application to the milimeter wave system. RF MEMS switches offer a substantilly higher performance than PM diode or FET switches. In this paper, SPDT(single-pole-double-throw) switch are designed to use 10 GHz. Actuation voltage and displacement are simulated by tool. And stress and distribution are simulated.

  • PDF

Design of CMOS Multifunction ICs for X-band Phased Array Systems (CMOS 공정 기반의 X-대역 위상 배열 시스템용 다기능 집적 회로 설계)

  • Ku, Bon-Hyun;Hong, Song-Cheol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.6-13
    • /
    • 2009
  • For X-band phased array systems, a power amplifier, a 6-bit phase shifter, a 6-bit digital attenuator, and a SPDT transmit/receive (T/R) switch are fabricated and measured. All circuits are demonstrated by using CMOS 0.18 um technology. The power amplifier has 2-stage differential and cascade structures. It provides 1-dB gain-compressed output power ($P_{1dB}$) of 20 dBm and power-added-efficiency (PAE) of 19 % at 8-11 GHz frequencies. The 6-bit phase shifter utilizes embedded switched filter structure which consists of nMOS transistors as a switch and meandered microstrip lines for desired inductances. It has $360^{\circ}$ phase-control range and $5.6^{\circ}$ phase resolution. At 8-11 GHz frequencies, it has RMS phase and amplitude errors are below $5^{\circ}$ and 0.8 dB, and insertion loss of $-15.7\;{\pm}\;1,1\;dB$. The 6-bit digital attenuator is comprised of embedded switched Pi-and T-type attenuators resistive networks and nMOS switches and employes compensation circuits for low insertion phase variation. It has max. attenuation of 31.5 dB and 0.5 dB amplitude resolution. Its RMS amplitude and phase errors are below 0.4 dB and $2^{\circ}$ at 8-11 GHz frequencies, and insertion loss is $-10.5\;{\pm}\;0.8\;dB$. The SPDT T/R switch has series and shunt transistor pairs on transmit and receive path, and only one inductance to reduce chip area. It shows insertion loss of -1.5 dB, return loss below -15 dB, and isolation about -30 dB. The fabricated chip areas are $1.28\;mm^2$, $1.9mm^2$, $0.34\;mm^2$, $0.02mm^2$, respectively.

A Study on design of the PZT Cantilever for Micro Switch (Micro Switch용 PZT Cantilever의 설계에 관한 연구)

  • Kim, In-Sung;Song, Jae-Sung;Min, Bok-Ki;Jeong, Soon-Jong;Muller, A.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.422-423
    • /
    • 2005
  • RF Micro switches is a miniature device or an array of integration devices and mechanical components and fabricated with Ie batch-processing techniques. RF Micro switches application area are in phased arrays and reconfigurable apertures for defence and telecommunication systems, switching network for satellite communication, and single-pole double throw switches for wireless application. Recently, RF Micro switches have been developed for the application to the milimeter wave system. RF Micro switches offer a substantilly higher performance than PIN diode or FET switches. In this paper, SPDT(single-pole-double-throw) switch are designed to use 10 GHz. Actuation voltage and displacement are simulated by tool.

  • PDF

A Bluetooth/WiFi Dual-Mode RF Front-End Module Using LTCC Technology (LTCC 기술을 이용한 Bluetooth/WiFi 이중 모드 무선 전단부 모듈 구현)

  • Ham, Beom-Cheol;Ryu, Jong-In;Kim, Jun-Chul;Kim, Dong-Su;Park, Young-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.8
    • /
    • pp.958-966
    • /
    • 2012
  • This paper presents a compact bluetooth/WiFi dual-mode dual-band RF front-end module(FEM) is realized by low temperature co-fired ceramic(LTCC) technology. The proposed RF front-end module consists of a diplexer, baluns in the LTCC substrate, and an SPDT switch, an SP3T switch on the LTCC substrate. In order to reduce the module size and increase integration level, the proposed diplexer and balun are designed using LC lumped elements. The parasitic elements caused by coupling effect between metal pattern layers and ground plane layer are considered during the design. The fabricated dual-mode RF front-end module has 13 pattern layers including three inner ground layers and it occupies less than $3.0mm{\times}3.7mm{\times}0.66mm$.

Paper-Based Pattern Switchable Antenna Using Inkjet-Printing Technology (잉크젯 프린팅 기술을 이용한 종이 기반의 방사패턴 가변 안테나)

  • Eom, Seung Hyun;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.7
    • /
    • pp.613-619
    • /
    • 2015
  • In this paper, we proposed a paper-based pattern-switchable antenna using inkjet-printing technology. The proposed antenna is composed of two bow-tie antennas and a switching network. The bow-tie antennas are inkjet-printed on paper using a low cost home printer. The switching network is built on a printed-circuit-board(PCB) and consists of a single-pole-double-throw(SPDT) switch and balun element. A double-sided parallel-strip line(DSPSL) can convert the unbalanced microstrip mode to the balanced strip mode. Two bow-tie antennas have different radiation patterns because of the different orientation of the reflectors. It is demonstrated from EM simulation and measurement that the radiation patterns of the proposed antenna are successfully switched by the SPDT.

Improvement of VSWR Measurement for Various Modulated Signals at 1.8 GHz Band (다양한 변조 신호의 1.8 GHz 대역 VSWR 측정 개선에 관한 연구)

  • Park, Sang-Jin;Kang, Sung-Min;Koo, Kyung-Heon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.9
    • /
    • pp.833-839
    • /
    • 2011
  • This paper has suggested a technique for measuring VSWR at 1.8 GHz band for various modulated signals. By using directional coupler the power of incident and reflected wave is measured, and in order to minimize the size and cost of the measuring circuit, a SPDT(Single Pole Double Throw) switch is adopted to realize the circuit with just one detector and one A/D(Analog to Digital) converter. MCU(Micro Control Unit) is used to calculate the voltage reflection coefficient and VSWR, and the measured VSWR error has improved by approximately 0.2 with applying a simple bubble sorting algorithm to reduce the measurement error, the MCU process time and load.

A Study on the Design of Polarization Selective Antenna for UHF RFID System (UHF RFID 시스템을 위한 Polarization Selective 안테나 설계 연구)

  • Lee, Sa-Won;Song, Woo-Yong
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.2
    • /
    • pp.170-175
    • /
    • 2010
  • This article proposed polarization selective antenna for UHF RFID system. The proposed antenna is consist of microstrip patch antenna with dual feeding and two SPDT switches and a SP4T switch and 3dB hybrid coupler. Through control of voltage of switches, the proposed reader antenna can select horizontally linear polarization, vertically linear polarization, left-hand circular polarization (LHCP) and right hand circular polarization (RHCP). The proposed reader antenna satisfied 2:1 VSWR at 902MHz ~ 928MHz. and 3dB under AR(axial ratio). And it can select appropriative polarization with user environment and tag polarization. So it minimize PLF and increased reading distance.

Design of an Active Inductor-Based T/R Switch in 0.13 μm CMOS Technology for 2.4 GHz RF Transceivers

  • Bhuiyan, Mohammad Arif Sobhan;Reaz, Mamun Bin Ibne;Badal, Md. Torikul Islam;Mukit, Md. Abdul;Kamal, Noorfazila
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.261-269
    • /
    • 2016
  • A high-performance transmit/receive (T/R) switch is essential for every radio-frequency (RF) device. This paper proposes a T/R switch that is designed in the CEDEC 0.13 μm complementary metal-oxide-semiconductor (CMOS) technology for 2.4 GHz ISM-band RF applications. The switch exhibits a 1 dB insertion loss, a 28.6 dB isolation, and a 35.8 dBm power-handling capacity in the transmit mode; meanwhile, for the 1.8 V/0 V control voltages, a 1.1 dB insertion loss and a 19.4 dB isolation were exhibited with an extremely-low power dissipation of 377.14 μW in the receive mode. Besides, the variations of the insertion loss and the isolation of the switch for a temperature change from - 25℃ to 125℃ are 0.019 dB and 0.095 dB, respectively. To obtain a lucrative performance, an active inductor-based resonant circuit, body floating, a transistor W/L optimization, and an isolated CMOS structure were adopted for the switch design. Further, due to the avoidance of bulky inductors and capacitors, a very small chip size of 0.0207 mm2 that is the lowest-ever reported chip area for this frequency band was achieved.

A Study of Fabrication of RF Control System for Building Sunshade (건물 차양을 위한 RF제어 시스템 제작에 관한 연구)

  • Park, Jung-Cheul;Chu, Soon-Nam
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.149-157
    • /
    • 2014
  • This paper is based on the fabrication of wireless control system for the building shading device. RF Module was controlled by UHF wireless CC1020 chip which has low electrical power and low electrical voltage. Also 447.8625~447.9875 frequency, 4800Baud data rate and 12.5 kHz channel spacing was controlled by the use of SPDT switch and with Microcontroller program. Furthermore, the helical antenna was used. The starting production of 447.8625~447.9875 kHz wireless electrical power was used. As the result, it did not exceed 10dBm which is the standard of low power wireless system. Shading efficiency was measured at 25%, 50%, 75% direction with controlling the interior temperature and the intensity of illumination at the rate of 1 hour. As the result, the intensity of illumination was lowered to 82~87% at 25% direction with $0.6{\sim}1.4^{\circ}C$ lowered temperature. At 50% direction, the intensity of illumination was lowered to 60~68% with $2.3{\sim}4.1^{\circ}C$ lowered temperature. And at 75% direction, the intensity of illumination was lowered to 41~47% with $3.4{\sim}5.1^{\circ}C$ lowered temperature.