• Title/Summary/Keyword: SPCP Reactor

Search Result 15, Processing Time 0.031 seconds

Ca(OH)2촉매를 이용한 플라즈마 반응에 의한 황산화물(유해가스)의 제거에 관한 연구 (A study of decomposition of sulfur oxides(harmful gas) using calcium dihydroxide catalyst by plasma reactions)

  • 김다영;황명환;우인성
    • 대한안전경영과학회지
    • /
    • 제16권2호
    • /
    • pp.237-246
    • /
    • 2014
  • Researches on the elimination of sulfur and nitrogen oxides with catalysts and absorbents reported many problems related with elimination efficiency and complex devices. In this study, decomposition efficiency of harmful gases was investigated. It was found that the efficiency rate can be increased by moving the harmful gases together with SPCP reactor and the catalysis reactor. Calcium hydroxide($Ca(OH)_2$), CaO, and $TiO_2$ were used as catalysts. Harmful air polluting gases such as $SO_2$ were measured for the analysis of decomposition efficiency, power consumption, and voltage according to changes to the process variables including frequency, concentration, electrode material, thickness of electrode, number of electrode winding, and additives to obtain optimal process conditions and the highest decomposition efficiency. The standard sample was sulfur oxide($SO_2$). Harmful gases were eliminated by moving them through the plasma generated in the SPCP reactor and the $Ca(OH)_2$ catalysis reactor. The elimination rate and products were analyzed with the gas analyzer (Ecom-AC,Germany), FT-IR(Nicolet, Magna-IR560), and GC-(Shimazu). The results of the experiment conducted to decompose and eliminate the harmful gas $SO_2$ with the $Ca(OH)_2$ catalysis reactor and SPCP reactor show 96% decomposition efficiency at the frequency of 10 kHz. The conductivity of the standard gas increased at the frequencies higher than 20 kHz. There was a partial flow of current along the surface. As a result, the decomposition efficiency decreased. The decomposition efficiency of harmful gas $SO_2$ by the $Ca(OH)_2$ catalysis reactor and SPCP reactor was 96.0% under 300 ppm concentration, 10 kHz frequency, and decomposition power of 20 W. It was 4% higher than the application of the SPCP reactor alone. The highest decomposition efficiency, 98.0% was achieved at the concentration of 100 ppm.

중첩 방전 반응기에 의한 NOx의 분해 특성 (The Characteristics of Decomposition of NOx by Superposing Discharge Plasma Reactor)

  • 선상권;우인성;황명환;박동화;조정국
    • 조명전기설비학회논문지
    • /
    • 제13권4호
    • /
    • pp.32-37
    • /
    • 1999
  • 본 연구에서는 연소공정에서 발생하는 NOx를 제거하기 위해 연면방전과 AC Corona 방전을 중첩해서 특수설계 제작된 중첩방전 반응기의 방전분해 특성을 연구하였다. 실험은 SPCP, Corona Discharge 및 중첩방전에 대한 NOx의 분해율을 비교 측정하였다. 실험변수는 방전형태, 가스의 농도, 방전주파수, 가스의 유량 등에 대하여 측정하였다. 실험결과 중첩방전에 의한 NOx의 분해율은 SPCP방전고 Corona방전에 의한 분해율보다 10∼15[%] 증가하였고 소모전력도 10[%] 정도 작게 소모되었다. 중첩방전시 상부전극의 주파수의 영향은 주파수가 작을수록 NOx의 분해율이 높았고 하부전극의 SPCP만의 방전시에는 주파수가 높을수록 NOx의 분해율이 증가하였다. 방전형태에 대한 NOx의 최대분해율은 SPCP일 때 방전전력 18[W]에서 80[%] 이었고 AC코로나 방전일 때 방전전력 805[W]에서 10[%] 이었으나 중첩방전의 경우는 14[W]에서 90[%]로 중첩방전의 효과는 10[%]이상 증가하였다.

  • PDF

SPCP+AC 중첩 방전 반응기에 의한 NOx의 분해 제거 (Decomposition of NOx by SPCP+AC Superposing Discharge Plasma Reactor)

  • 선상권;우인성;황명환;박동화;김윤선;산외서수
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 1999년도 춘계 학술논문발표회 논문집
    • /
    • pp.217-222
    • /
    • 1999
  • 비열플라스마를 형성하는 방법은 전자 beam조사식과 전기방전법이 있다. 이 두방법의 공통점은 고에너지의 전자를 생성하여 플라스마를 발생시켜 가스분자의 전자충돌과 이온화에 의해 free radical반응에 의하여 가스분자를 분해시키는 것이다. (중략)

  • PDF

중첩방전 반응기에 의한 오존의 생성 (Ozone Generation by Superimposing Discharge Reactor)

  • 우인성;황명환;조정국;이영희;목연수
    • 한국안전학회지
    • /
    • 제14권3호
    • /
    • pp.63-68
    • /
    • 1999
  • In this paper, characteristics of ozone generation by using coil and SPCP + DC corona reactor was studied. The ceramic-based surface discharge electrode, which was first invented as a high-efficiency ozonizer, has been used as an experimental plasma chemical reactor.(Surface Induced Plasma Chemical Processing, SPCP.) The electrode, however, has a structural disadvantage that a highly energetic plasma region is localized near the electrode surface, which may make it impossible for higher efficiency to realize. In an attempt to overcome this advantage, we have developed a hybrid reactor which employs a corona discharge unit together with the surface discharge unit. Experimental results suggest that the efficiency of the ozone production rate is improved when positive corona discharge is added.

  • PDF

연변방전에 의한 유해물질의 분해제거 (Decomposition of Harmful Materials by SPCP Discharge)

  • 우인성;황명환
    • 한국전기전자재료학회논문지
    • /
    • 제11권11호
    • /
    • pp.1043-1048
    • /
    • 1998
  • The decomposition performance of the Surface induced Plasma Chemical Processing(SPCP) for benzene, toluene, xylene and $NO_2$ were experimentally examined. Discharge exciting frequency range was 5kHz and 10kHz, and low frequency discharge requires high voltage to inject high electric power in gas and to decompose contaminants. The decomposition rate of dioxide nitrogen for 5kHz power in gas and to decompose contaminants. The decomposition rate of dioxide nitrogen for 5kHz power supply is only 85%, but it’s rate for 10kHz power supply is very high, more than 96% when peak voltage is 12kv. Aromatic hydrocarbon vapor of up to 1000ppm is almost throughly decomposed at the flow rate of 1000$\ell$/min or lower rate under the discharge with electric power of several hundred watts. High decomposition rate is shown in every case, that is, for SPCP reactor is necessary to obtain the decomposition rate of more than 80~98%. The decomposition rate of benzene, toluene and xylene were 90~98% and dioxide nitrogen was 45~96%.

  • PDF

$TiO_2$ 촉매를 이용한 플라즈마반응에 의한 NOx의 분해 (Reduction and Decomposition of Hazardous NOx by Discharge Plasma with $TiO_2$)

  • 박성국;우인성;황명환
    • 한국안전학회지
    • /
    • 제23권5호
    • /
    • pp.54-60
    • /
    • 2008
  • The objective of this study is to obtain the optimal process condition and the maximum decomposition efficiency by measuring the decomposition efficiency, electricity consumption, and voltage in accordance with the change of the process variables such as the frequency, maintaining time period, concentration, electrode material, thickness of the electrode, the number of windings of the electrode, and added materials etc. of the harmful atmospheric contamination gases such as NO, $NO_2$, and $SO_2$ etc. with the plasma which is generated by the discharging of the specially designed and manufactured $TiO_2$ catalysis reactor and SPCP reactor. The decomposition efficiency of the NO, the standard samples, is obtained with the plasma which is being generated by the discharge of the combination effect of the $TiO_2$ catalysis reactor and SPCP reactor with the variation of those process variables such as the frequency of the high voltage generator($5{\sim}50kHz$), maintaining time of the harmful gases($1{\sim}10.5sec$), initial concentration($100{\sim}1,000ppm$), the material of the electrode(W, Cu, Al), the thickness of the electrode(1, 2, 3mm), the number of the windings of the electrode(7, 9, 11turns), basic gases($N_2$, $O_2$, air), and the simulated gas($CO_2$) and the resulting substances are analyzed by utilizing FT-IR & GC.

Ca(OH)2촉매를 이용한 플라즈마 반응에 의한 황산화물의 제거에 관한 연구 (A study of decomposition of sulfur oxides using Calcium hydroxide catalyst by plasma reactions)

  • 김다영;우인성;이선희;김도현;김병철
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2013년 추계학술대회
    • /
    • pp.547-560
    • /
    • 2013
  • In this study, the air pollutant removal such as sulfur oxides was studied. A combination of the plasma discharge in the reactor by the reaction surface discharge reactor Calcium hydroxides catalytic reactor and air pollutants, hazardous gas SOx, changes in gas concentration, change in frequency, the thickness of the electrode, kinds of electrodes and the addition of simulated composite catalyst composed of a variety of gases, including decomposition experiments were performed by varying the process parameters. The experimental results showed the removal efficiency of 98% in the decomposition of sulfur oxides removal experiment when Calcium hydroxides catalysts and the tungsten(W) electrodes were used. It was increased 3% more than if you do not have the catalytic. If added to methane gas was added the removal efficiency increased decomposition.

  • PDF

복합촉매를 이용한 플라즈마 반응에 의한 유해가스의 제거에 관한 연구 (A study of decomposition of harmful gases using Composite catalyst by Photocatalytic plasma reactions)

  • 박화용;김관중;우인성
    • 대한안전경영과학회지
    • /
    • 제15권1호
    • /
    • pp.121-132
    • /
    • 2013
  • The objective of this study is to maintain the same frequency as the electrode material, concentration, duration of decomposition efficiency, power consumption and voltage measurements using a composite catalyst according to the change of process parameters to obtain the optimum state of the process and the maximum decomposition efficiency. In this paper, known as a major cause of air pollution, such as NO, NO2, SO2, frequency, flow rate, concentration, the material of the electrodes, and using TiO2 catalyst reactor with surface discharge caused by discharging the reactor plasma NOx, SOx decompose the harmful gas want to remove.

복합촉매를 이용한 플라즈마 반응에 의한 황산화물의 제거에 관한 연구 (A study of decomposition of sulfur oxides using Composite catalyst by plasma reactions)

  • 우인성;황명환;김다영;김관중;김성태;박화용
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2013년 춘계학술대회
    • /
    • pp.655-668
    • /
    • 2013
  • In this study, a combination of the plasma discharge in the reactor by the reaction surface discharge reactor complex catalytic reactor and air pollutants, hazardous gas SOx, change in frequency, residence time, and the thickness of the electrode, the addition of simulated composite catalyst composed of a variety of gases, including decomposition experiments were performed by varying the process parameters. 20W power consumption 10kHz frequency decomposition removal rate of 99% in the decomposition of sulfur oxides removal experiment that is attached to the titanium dioxide catalyst reactor experimental results than if you had more than 5% increase. If added to methane gas was added, the removal efficiency increased decomposition, the oxygen concentration increased with increasing degradation rate in the case of adding carbon dioxide decreased.

  • PDF

Decomposition of NO$_2$ by SPCP

  • Kang, Hyun Choon;An, Hyung Whan;Lee, Han Seob;Hwang, Myung Whan;Woo, In Sung;Kang, An Soo
    • International Journal of Safety
    • /
    • 제1권1호
    • /
    • pp.52-57
    • /
    • 2002
  • The Decomposition of NO$_2$ (nitrogen dioxide), one of the Hazardous Air Pollutant (HAP), was studied by utilizing the SPCP (Surface induced discharge Plasma Chemical Processing) reactor so as to obtain optimum process variables and maximum decomposition efficiencies. Experimental results showed that for the frequency of 10kHz, the highest deco position efficiency of 84.7% for NO$_2$ was observed at the power consumptions of 20W. The decomposition efficiency of $NO_2$ was found to be: 1) proportional to the residence times, and inversely proportional to the initial concentrations of $NO_2$; 2) the maximum when the electrode diameter was 3mm; 3) influenced by the electrode material, decreasing in the order of W>Cu>Al; and 4) proportional to the $CH_4$ content, due to which the highest efficiency of 98% was obtained with almost all the $NO_2$ removed.