• Title/Summary/Keyword: SPATIAL

Search Result 24,377, Processing Time 0.041 seconds

Knowledge-Based Approach for an Object-Oriented Spatial Database System (지식기반 객체지향 공간 데이터베이스 시스템)

  • Kim, Yang-Hee
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.3
    • /
    • pp.99-115
    • /
    • 2003
  • In this paper, we present a knowledge-based object-oriented spatial database system called KOBOS. A knowledge-based approach is introduced to the object-oriented spatial database system for data modeling and approximate query answering. For handling the structure of spatial objects and the approximate spatial operators, we propose three levels of object-oriented data model: (1) a spatial shape model; (2) a spatial object model; (3) an internal description model. We use spatial type abstraction hierarchies(STAHs) to provide the range of the approximate spatial operators. We then propose SOQL, a spatial object-oriented query language. SOQL provides an integrated mechanism for the graphical display of spatial objects and the retrieval of spatial and aspatial objects. To support an efficient hybrid query evaluation, we use the top-down spatial query processing method.

  • PDF

Efficient Processing of Spatial Preference Queries in Spatial Network Databases

  • Cho, Hyung-Ju;Attique, Muhammad
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.210-224
    • /
    • 2019
  • Given a positive integer k as input, a spatial preference query finds the k best data objects based on the scores (e.g., qualities) of feature objects in their spatial neighborhoods. Several solutions have been proposed for spatial preference queries in Euclidean space. A few algorithms study spatial preference queries in undirected spatial networks where each edge is undirected and the distance between two points is the length of the shortest path connecting them. However, spatial preference queries have not been thoroughly investigated in directed spatial networks where each edge has a particular orientation that makes the distance between two points noncommutative. Therefore, in this study, we present a new method called ALPS+ for processing spatial preference queries in directed spatial networks. We conduct extensive experiments with different setups to demonstrate the superiority of ALPS+ over conventional solutions.

Structuring of Elementary Students' Spatial Thinking with Spatial Ability in Learning of Volcanoes and Earthquakes Using GeoMapApp-Based Materials (GeoMapApp 자료를 이용한 화산과 지진 학습에서 초등학생의 공간 능력에 따른 공간적 사고의 발현 양상)

  • Song, Donghyuk;Maeng, Seungho
    • Journal of Korean Elementary Science Education
    • /
    • v.40 no.3
    • /
    • pp.390-406
    • /
    • 2021
  • This study investigated how elementary students with different spatial ability constructed spatial thinking process about on volcanoes and earthquakes with GeoMapApp-based materials. Students' spatial thinking process was analyzed in terms of spatial concept recognized, tools of spatial representation, and their spatial reasoning to construct topographic structure. The student group with high-scored spatial ability showed the spatial reasoning based on internal representation of building mental images through sectional division of horizontal distance, directly connected with spatial concept, or distorting spatial concept. The student group with low-scored spatial ability built the spatial reasoning directly connected with spatial concept instead of transforming into internal representation, and partially recognized spatial concept on either distance or depth. Based on the results, we argued identifying spatial concepts such as distance, height, or depth from the GeoMapApp data would be funda- mental for the better spatial thinking.

A Study on the Relation among Mathematical - Spatial - Verbal Abilities and Gender Differences of Engineering Students (공과대학생들의 수리 - 공간 - 언어 능력 사이의 관계 및 성별 차이에 관한 연구)

  • Kim, Yeon Mi
    • Journal of Engineering Education Research
    • /
    • v.18 no.4
    • /
    • pp.34-44
    • /
    • 2015
  • Mathematical, spatial, and verbal abilities are important for future engineers to succeed in the STEM disciplines. The purpose of the study is to assess engineering students' spatial abilities and analyse the relationship with mathematical achievement, verbal achievement, and gender. On the mental rotation tests, 65% of male students demonstrated a substantial level of spatial abilities. But only 30% of female students exhibited spatial skills at the same level as their male colleagues. The correlations between mathematical - spatial - verbal abilities are found to be negligible. When spatial visualization ability was plotted according to the mathematical achievement level, there was no difference in the mean spatial abilities score. But when mathematical achievement score was plotted according to the spatial abilities, there was a noticeable difference. Regression analysis confirmed that female students' mathematical achievement increased as spatial abilities improved. This phenomenon was not observed for male students. It's because male students' spatial ability already contributed to their mathematics achievement. So spatial ability can be regarded as one factor for the gender differences in mathematics achievement. The gender gap on spatial abilities and math achievement is large among high achieving students. For example, there was a 4.3 to 1 male - female ratio and 3.4 to 1 male - female ratio among students scoring 99th percentile in spatial visualization test and scholastic aptitude test-math.

Improvement of the Local Government's Spatial Information Policy - A Case of Seoul Metropolitan Government - (지방자치단체 공간정보정책 개선방안 연구 - 서울특별시 공간정보정책 및 시스템 분석 사례 -)

  • Choi, Jun-Young;Won, Jong-Seok
    • Journal of Cadastre & Land InformatiX
    • /
    • v.45 no.1
    • /
    • pp.17-30
    • /
    • 2015
  • Local governments' spatial information policies are very important in that it can increase the relatedness to upper policy regarding the share, openness and converged utilization of spatial information and contribute to voluntary participation and creative uses linked to big data. However, local governments' spatial information policies require enhancement since it need to update framework spatial data, to derive spatial information service and to share the data. In this research, we compared the spatial information policies and related systems of central and local governments, and analyzed the local governments' spatial information policy enforcement plans and the Seoul metropolitan government's utilization survey on 32 spatial information systems. In the result, for the improvement of local governments' spatial policies, on-demand updating of base map using the as built drawings linked to field work departments, securing up-to-date public domain spatial information through the NSDI system, sharing of spatial information based on the spatial information platform and benchmarking of best practices related to the spatial information based policy participation are suggested.

Switching between Spatial Modulation and Quadrature Spatial Modulation

  • Kim, Sangchoon
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.61-68
    • /
    • 2019
  • Spatial modulation (SM) is the first proposed space modulation technique. By further utilizing the quadrature spatial dimension, quadrature spatial modulation (QSM) has been developed as an amendment to SM system to enhance the overall spectral efficiency. Both techniques are capable of entirely eliminating interchannel interference (ICI) at the receiver. In this paper, we propose a simple adaptive hybrid switching transmission scheme to obtain better system performance than SM and QSM systems under a fixed transmission date rate. The presented modulator selection criterion for switching between spatial modulator and quadrature spatial modulator is based on the larger received minimum distance of spatial modulator and quadrature spatial modulator to exploit the spatial channel freedom. It is shown through Monte Carlo simulations that the proposed hybrid SM and QSM switching system yields lower error performance than the conventional SM and QSM systems under the same fixed data rate and thus can provide signal to noise ratio (SNR) gain.

Integrated Ground-Underground Spatial Network for Urban Spatial Analysis (도시 공간분석을 위한 지상·지하 공간 네트워크)

  • Piao, Gensong;Choi, Jaepil
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.4
    • /
    • pp.69-76
    • /
    • 2018
  • The purpose of this study is to propose and verify a spatial network construction method that integrated roads and subway lines to improve the predictability of the urban spatial analysis model. The existing axial map for urban spatial analysis did not reflect the subway line that serves as an important moving space in modern cities. To improve this axial map, proposed a Ground-Underground Spatial Network by integrating the underground spatial network with the axial map. As a result of the integration analysis, the Ground-Underground Spatial Network(GUSN) were similar to the movement frequency. Correlation of GUSN was 0.723, which showed higher explanatory power than correlation coefficient of 0.575 in axial map. The result of this study is expected to be a theoretical basis for constructing spatial network in urban space analysis with subway.

Middle School Students' Characteristics of Spatial Ability in Earth Science Activity using Orienteering

  • Choi, Youngjin;Shin, Donghee
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.647-658
    • /
    • 2022
  • The purpose of this study is to analyze students' learning characteristics regarding spatial ability, orienteering ability and earth science content learning ability and their relationship through development and application of earth science activities using orienteering. The programme aims to improve students' spatial ability using orienteering activity which requires spatial ability. Topics in the programme included map, compass, contour, movement of celestial, and constellation application. Students were to orienteer in the field using the method they learned in class. This programme was applied to five 7th graders. The results are, first, students who have positive attitude toward science and do well at school tended to perceive their orienteering ability high. Second, all parts of spatial ability, spatial visualization, spatial orientation, spatial relation were used during orienteering, especially spatial visualization and spatial orientation. The relationship between spatial ability, orienteering ability, and earth science content learning abilities was not clear. However, orienteering ability and earth science content learning ability were in similar tendency.

Parallel Algorithm for Spatial Data Mining Using CUDA

  • Oh, Byoung-Woo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.2
    • /
    • pp.89-97
    • /
    • 2019
  • Recently, there is an increasing demand for applications utilizing maps and locations such as autonomous vehicles and location-based services. Since these applications are developed based on spatial data, interest in spatial data processing is increasing and various studies are being conducted. In this paper, I propose a parallel mining algorithm using the CUDA library to efficiently analyze large spatial data. Spatial data includes both geometric (spatial) and non-spatial (aspatial) attributes. The proposed parallel spatial data mining algorithm analyzes both the geometric and non-spatial relationships between two layers. The experiment was performed on graphics cards containing CUDA cores based on TIGER/Line data, which is the actual spatial data for the US census. Experimental results show that the proposed parallel algorithm using CUDA greatly improves spatial data mining performance.

A study on the Spatial Sampling Method to Minimize Spatial Autocorrelation of Spatial and Geographical Data (공간·지리적 자료의 공간자기상관성을 최소화하는 공간샘플링 기법에 관한 연구)

  • Lee, Youn Soo;Lee, Man Choul;Lah, Kyung Beom;Kang, Jun Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1317-1325
    • /
    • 2014
  • The study focused on analyzing spatial sampling by minimizing autocorrelation of spatial based on spatial and geographical data. The study concluded two different ways of minimizing autocorrelation. First, it was important to use suitable spatial sampling method to alienate spatial autocorrelation from spatial or geographical data. The shear distribution rate of public transportation in Seoul resulted in high rate of autocorrelation. However, the study showed samples eliminated autocorrelation when samples were extracted with reasonable distance(above 400m) apart. Without spatial sampling the distortion of spatial data leads to false results; therefore, spatial sampling is indispensable. Second, factors which fluctuates shear distribution of public transportation spatial sampling changed before and after spatial sampling. This was caused by incapable of controling inherent spatial autocorrelation of the data.