• Title/Summary/Keyword: SOPDT

Search Result 6, Processing Time 0.023 seconds

Real-coded genetic algorithm for identification of time-delay process

  • Shin, Gang-Wook;Lee, Tae-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1645-1650
    • /
    • 2005
  • FOPDT(First-Order Plus Dead-Time) and SOPDT(Second-Order Plus Dead-Time) process, which are used as the most useful process in industry, are difficult about process identification because of the long dead-time problem and the model mismatch problem. Thus, the accuracy of process identification is the most important problem in FOPDT and SOPDT process control. In this paper, we proposed the real-coded genetic algorithm for identification of FOPDT and SOPDT processes. The proposed method using real-coding genetic algorithm shows better performance characteristic comparing with the existing an area-based identification method and a directed identification method that use step-test responses. The proposed strategy obtained useful result through a number of simulation examples.

  • PDF

Design of IMC-PID Controller via Target Function (목표함수를 이용한 IMC-PID 제어기 설계)

  • Choi In-Hyuk;Suh Byung-Shul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.3 s.309
    • /
    • pp.1-7
    • /
    • 2006
  • In this paper, a method for IMC-PID controller tuning is proposed based on obtaining a controller from closed-loop transfer function. It is considered a plant with the second-order plus dead time(SOPDT) model and selected the third-order plus dead time transfer function model as a target function. The filter function is derived from the suitable target function to satisfy the design specifications. A robustness test was done to verify the robust-stability.

Identification of Continuous System from Step Response using HS Optimization Algorithm (HS 최적화 알고리즘을 이용한 계단응답과 연속시스템 인식)

  • Lee, Tae-bong;Shon, Jin-geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.292-297
    • /
    • 2016
  • The first-order plus dead time(FOPDT) and second-order plus dead time(SOPDT), which describes a linear monotonic process quite well in most chemical and industrial processes and is often sufficient for PID and IMC controller tuning. This paper presents an application of heuristic harmony search(HS) optimization algorithm to the identification of linear continuous time-delay systems from step response. This recently developed HS algorithm is conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. The effectiveness of the proposed identification method has been demonstrated through a number of simulation examples.

Design of PID Controller to Ensure Specified Phase margin and Iso-damping property Using Reduction Model (축소 모델을 이용한 위상여유와 등 제동 특성을 만족하는 PID 제어기 설계)

  • Cho, Joon-Ho;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.113-118
    • /
    • 2007
  • In this paper, a new method is proposed for robust proportional- integral - derivative (PID) control that is to ensure specified phase margin and iso - damping property using reduction model. This method is based on the second order plus dead time(SOPDT) reduction model of the high order model. Reduction model used to ensure iso-damping property in the feature frequency. Simulation results gives proof of effectiveness of proposed method.

  • PDF

System Identification(SOPTD) using relay feedback test combined with P controller and Design of IMC-PID controller via Target Function (릴레이와 비례제어기를 이용한 이차시간지연 모델에 대한 목표함수를 이용한 IMC-PID제어기 동조)

  • Koo, Min;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1862-1863
    • /
    • 2006
  • In this paper, A new tuning method for IMC-PID controller is proposed with the identification using the relay method from closed-loop transfer function. It is considered a second-order plus delay time(SOPDT) model and selected a third-order plus delay time transfer function model as a target function. The filter function is derived from the suitable target function to satisfy the design specifications. A robustness test was done to verify the robust-stability.

  • PDF

Genetic Algorithm for Identification of Time Delay Systems from Step Responses

  • Shin, Gang-Wook;Song, Young-Joo;Lee, Tae-Bong;Choi, Hong-Kyoo
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.79-85
    • /
    • 2007
  • In this paper, a real-coded genetic algorithm is proposed for identification of time delay systems from step responses. FOPDT(First-Order Plus Dead-Time) and SOPDT(Second-Order Plus Dead-Time) systems, which are the most useful processes in this field, but are difficult for system identification because of a long dead-time problem and a model mismatch problem. Genetic algorithms have been successfully applied to a variety of complex optimization problems where other techniques have often failed. Thus, the modified crossover operator of a real-code genetic algorithm is proposed to effectively search the system parameters. The proposed method, using a real-coding genetic algorithm, shows better performance characteristics when compared to the usual area-based identification method and the directed identification method that uses step responses.