• Title/Summary/Keyword: SONAR sensor configuration

Search Result 6, Processing Time 0.028 seconds

A Simulator Development for Determining the Sonar Sensor Configuration of Unmanned Underwater Vehicles Based on a Hold-at-Risk Scenario (위험제어 시나리오 기반의 무인잠수정 소나 센서 배열 선정을 위한 시뮬레이터 개발)

  • Shin, Myoungin;Lee, Jinho;Hong, Wooyoung;Kim, Woo Shik;Bae, Hoseuk;Cho, Hyunjin
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.21-33
    • /
    • 2020
  • This study develops a simulator for determining the sonar sensor configuration of unmanned underwater vehicles (UUVs) based on a scenario, in order for UUVs to conduct an effective anti-submarine warfare (ASW). First, we analyze the missions and operational concepts of UUVs in the field of ASW, and then select a Hold-at-Risk scenario as the one with the highest priority. Next, for modeling the components of a simulator, the motion, acoustic characteristic, and environment condition of the platforms (UUV and target submarine) are specified. Especially, based on the beam pattern of each sonar configuration considered in this paper, the passive sonar equation is used to verify target detection, and we further estimate the azimuth and elevation of the target using amplitude and phase of the received signal, respectively. The simulation results show the performance tendency depending on the sonar sensor configurations of a UUV, and the simulator provides a high applicability under various scenarios.

Driving Environment Recognition and a Simple Wall-Following Algorithm for AGV Using Sonar Sensor (초음파 센서를 이용한 AGV의 주행 환경 인식과 간단한 벽면 따르기 알고리즘)

  • Kim, Seong-Joong;Lee, Jeong-Woong;Lee, Chang-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2337-2340
    • /
    • 2002
  • This paper presents the method of AGV(Automatic guided vehicle)'s moving environment(plane, corner, edge) recognition using SONAR sensor configuration. As for the SONAR sensor, the Crosstalk effect has been generally considered as an inevitable noisy phenomenon in the indoor environment. However, this effect can be used as a clue for classifying and localizing targets in the indoor environment if those can be controlled and used well. EERUF(error eliminate rapid ultrasonic firing) is a method for firing multiple ultrasonic sensors in mobile robot application and multi-echo mode of POLARIOD Device can reduce the Crosstalk effect. Here, Crosstalk effect was reduced using EERUF and applied to the AGV with a simple wall-following algorithm in the indoor environment. This method was tesed by a typical AGV with multi SONAR sensors in the laboratory environment.

  • PDF

Modeling and Design of a Distributed Detection System Based on Active Sonar Sensor Networks (능동 소나망 분산탐지 체계의 모델링 및 설계)

  • Choi, Won-Yong;Kim, Song-Geun;Hong, Sun-Mog
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.123-131
    • /
    • 2011
  • In this paper, modeling and design of a distributed detection system are considered for an active sonar sensor network. The sensor network has a parallel configuration and it consists of a fusion center and a set of receiver nodes. A system with two receiver nodes is considered to investigate a theoretical aspect of design. To be specific, AND rule and OR rule are considered as the fusion rules of the sensor network. For the fusion rules, it is shown that a threshold rule of each sensor node has uniformly most powerful properties. Optimum threshold for each sensor is obtained that maximizes the probability of detection given probability of false alarm. Numerical experiments were also performed to investigate the detection characteristics of a distributed detection system with multiple sensor nodes. The experimental results show how signal strength, false alarm probability, and the distance between nodes in a sensor field affect the system detection performances.

Conceptual Design of Cylindrical Hydrophone Arrays for Stabilization of Receiving Characteristics under Ocean Ambient Noise (해양 배경 소음 하의 수신 특성 안정화를 위한 원통형 하이드로폰 배열의 개념 설계)

  • Noh, Eunghwy;Lee, Hunki;Ohm, Won-Suk;Chang, Woosuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.200-209
    • /
    • 2015
  • An underwater sound surveillance system detects and tracks enemy ships in real-time using hydrophone arrays, in which seabed-mounted sensor arrays play a pivotal role. In this paper the conceptual design of seabed-mounted, cylindrical hydrophone arrays for use in shallow coastal waters is performed via finite element calculations. To stabilize the receiving characteristics under the ocean ambient noise, a technique for whitening the ambient noise spectrum using a metal baffle is proposed. Optimization of the array configuration is performed to achieve the directivity in the vertical and azimuthal directions. And the effects of the sonar dome shape and material on the structural vibration and sound scattering properties are studied. It is demonstrated that a robust hydrophone array, having a sensitivity deviation less than 4 dB over the frequency range of interest, can be obtained through the whitening of the ambient noise, the optimization of the array configuration, and the design of acoustically transparent sonar domes.

Optimization of parameters in mobile robot navigation using genetic algorithm (유전자 알고리즘을 이용한 이동 로봇 주행 파라미터의 최적화)

  • 김경훈;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1161-1164
    • /
    • 1996
  • In this paper, a parameter optimization technique for a mobile robot navigation is discussed. Authors already have proposed a navigation algorithm for mobile robots with sonar sensors using fuzzy decision making theory. Fuzzy decision making selects the optimal via-point utilizing membership values of each via-point candidate for fuzzy navigation goals. However, to make a robot successfully navigate through an unknown and cluttered environment, one needs to adjust parameters of membership function, thus changing shape of MF, for each fuzzy goal. Furthermore, the change in robot configuration, like change in sensor arrangement or sensing range, invokes another adjusting of MFs. To accomplish an intelligent way to adjust these parameters, we adopted a genetic algorithm, which does not require any formulation of the problem, thus more appropriate for robot navigation. Genetic algorithm generates the fittest parameter set through crossover and mutation operation of its string representation. The fitness of a parameter set is assigned after a simulation run according to its time of travel, accumulated heading angle change and collision. A series of simulations for several different environments is carried out to verify the proposed method. The results show the optimal parameters can be acquired with this method.

  • PDF

A study on temperature dependent acoustic receiving characteristics of underwater acoustic sensors (수중음향센서 수온 변화에 따른 음향 수신 특성 변화 연구)

  • Je, Yub;Cho, Yohan;Kim, Kyungseop;Kim, Yong-Woon;Park, Saeyong;Lee, Jeong-Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.2
    • /
    • pp.214-221
    • /
    • 2019
  • In this paper, a temperature dependent acoustic receiving characteristics of underwater acoustic sensor is studied by theoretical and experimental investigations. Two different types (low mid frequency sensor and high frequency sensor) of underwater acoustic sensors are designed with different configuration of baffle and conditioning plate. The temperature dependent characteristics of the acoustic sensors are investigated within the temperature range from $-2^{\circ}C$ to $35^{\circ}C$. The material properties of the piezoelectric ceramics, molding and baffle, which are the primary materials of the acoustic sensors, are measured with temperature change. The temperature dependent RVS (Receiving Voltage Sensitivity) characteristics of the acoustic sensors are simulated by using the measured material properties. The RVS changes of the acoustic sensors are measured by changing temperature in the watertank where the acoustic sensors are installed. The measured and the simulated data show that the temperature dependent characteristics of the acoustic sensors are mainly dependent for the sound speed changes of the molding material.