DOI QR코드

DOI QR Code

A study on temperature dependent acoustic receiving characteristics of underwater acoustic sensors

수중음향센서 수온 변화에 따른 음향 수신 특성 변화 연구

  • 제엽 (국방과학연구소 제6기술연구본부) ;
  • 조요한 (국방과학연구소 제6기술연구본부) ;
  • 김경섭 (국방과학연구소 제6기술연구본부) ;
  • 김용운 (국방과학연구소 제6기술연구본부) ;
  • 박세용 (국방과학연구소 제6기술연구본부) ;
  • 이정민 (국방과학연구소 제6기술연구본부)
  • Received : 2018.11.08
  • Accepted : 2019.03.26
  • Published : 2019.03.31

Abstract

In this paper, a temperature dependent acoustic receiving characteristics of underwater acoustic sensor is studied by theoretical and experimental investigations. Two different types (low mid frequency sensor and high frequency sensor) of underwater acoustic sensors are designed with different configuration of baffle and conditioning plate. The temperature dependent characteristics of the acoustic sensors are investigated within the temperature range from $-2^{\circ}C$ to $35^{\circ}C$. The material properties of the piezoelectric ceramics, molding and baffle, which are the primary materials of the acoustic sensors, are measured with temperature change. The temperature dependent RVS (Receiving Voltage Sensitivity) characteristics of the acoustic sensors are simulated by using the measured material properties. The RVS changes of the acoustic sensors are measured by changing temperature in the watertank where the acoustic sensors are installed. The measured and the simulated data show that the temperature dependent characteristics of the acoustic sensors are mainly dependent for the sound speed changes of the molding material.

본 논문은 수중음향센서의 수온 변화에 따른 음향 수신 특성 변화를 이론적, 실험적 방법으로 확인하였다. 반사판 및 배플 구성에 따라 중 저주파용 및 고주파용의 두 가지 음향센서를 설계하여 $-2^{\circ}C{\sim}35^{\circ}C$의 온도범위에서 온도 변화에 따른 음향 수신 특성을 각각 분석하였다. 음향센서 주요 구성 소재의 온도별 물성치 변화에 대한 영향성을 분석하기 위하여 압전세라믹, 몰딩 및 배플 시편의 온도별 물성치 변화를 측정하였고, 측정된 물성치를 활용하여 온도별 수신감도(Receiving Voltage Sensitivity, RVS) 변화를 유한요소해석 기법을 통하여 해석하였다. 제작된 두 가지 음향센서의 온도별 수신감도 특성을 측정하기 위하여, 내부 수온 및 수압 조정이 가능한 압력 챔버에 음향센서를 설치하고 챔버 내부 수온을 변화시켜가며 수신감도를 측정하였다. 측정 및 분석결과 수중센서의 온도별 수신감도 특성은 몰딩 재료의 음속변화에 주도적으로 영향을 받는 것을 확인하였다.

Keywords

GOHHBH_2019_v38n2_214_f0002.png 이미지

Fig. 3. Measurement set-up for temperature dependent material properties of the acoustic sensor materials.

GOHHBH_2019_v38n2_214_f0003.png 이미지

Fig. 4. Admittance curves of PZT hydrophone sphere with temperature change: -2 ℃, 15 ℃, 35 ℃.

GOHHBH_2019_v38n2_214_f0004.png 이미지

Fig. 5. Finite element model: (a) low⋅mid frequency sensor, (b) high frequency sensor.

GOHHBH_2019_v38n2_214_f0005.png 이미지

Fig. 6. Simulated RVS curves with respect to the temperature dependent material properties of polyurethane: (a) low⋅mid frequency sensor, (b) high frequency sensor.

GOHHBH_2019_v38n2_214_f0006.png 이미지

Fig. 7. Simulated RVS curves with respect to the temperature dependent material properties of vulkollan (a) low⋅mid frequency sensor, (b) high frequency sensor.

GOHHBH_2019_v38n2_214_f0007.png 이미지

Fig. 8. Experimental set-ups for temperature dependent RVS measurement of acoustic sensors.

GOHHBH_2019_v38n2_214_f0008.png 이미지

Fig. 9. Transmission characteristics of the acoustic chamber: (a) free-field rvs and in-chamber rvs of low·mid frequency sensors (b) free-field RVS and In-chamber RVS of high frequency sensors (c) theoretical and measured transmission loss of the acoustic chamber.

GOHHBH_2019_v38n2_214_f0009.png 이미지

Fig. 10. Measured RVS curves with respect to temperature change: (a) low·mid frequency sensors (b) high frequency sensors.

GOHHBH_2019_v38n2_214_f0010.png 이미지

Fig. 1. (a) Global sea surface temperature map in September, 2015 and (b) sea depth temperature profile.[2]

GOHHBH_2019_v38n2_214_f0011.png 이미지

Fig. 2. Configuration of the acoustic sensors: (a) low·mid frequency acoustic sensor (b) high frequency acoustic sensor.

Table 1. Materials used in the acoustic sensors and their acoustic properties.[10]

GOHHBH_2019_v38n2_214_t0001.png 이미지

Table 2. Piezoelectric coefficient, dielectric constant, and sensitivity of the spherical hydrophone with temperature change: -2 ℃, 15 ℃, 35 ℃.

GOHHBH_2019_v38n2_214_t0002.png 이미지

Table 3. Sound speed of polyurethane and vulkollan with temperature change: -2 ℃, 15 ℃, 35 ℃.

GOHHBH_2019_v38n2_214_t0003.png 이미지

References

  1. A. Soloviev and R. Lukas, The Near-surface Layer of the Ocean: Structure, Dynamics and Applications (Springer, Switzerland, 2006), pp. 1-63.
  2. NASA Earth Observatory, Global Maps. http://earthobservatory.nasa.gov/
  3. United States Military Standard, MIL-STD-810G, Method 501.5, Method 502.5., 2008.
  4. A. L. Van Buren, R. M. Drake, and A. E. Paolero, "Temperature dependence of the sensitivity of hydrophone standards used in international comparisons," Metrologia. 36, 281-285 (1999). https://doi.org/10.1088/0026-1394/36/4/6
  5. G. A. Beamiss, S. P. Robinson, G. Hayman, and T. J. Esward, "Determination of the variation in free-field hydrophone response with temperature and depth," Acta Acustica united with Acustica. 88, 799-802 (2002).
  6. G. A. Beamiss, G. Hayman, S. P. Robinson, and A. D. Thompson, "Improvements in the provision of standards for underwater acoustics at simulated ocean conditions," NPL Report DQL-AC 010, 2004.
  7. W. F. Wardle, "Baffled blanket acoustic array incorporating an indented reaction plate," US patent 4158189, 1979.
  8. J. H. Goodmote and D. E. Reiner, "Lightweight acoustic array," US patent 7889601, 2011.
  9. R. Busch, "Electroacoustic transducer arrangement for underwater antennas," US patent 7542378, 2009.
  10. C. H. Sherman and J. L. Butler, Transducer and Arrays for Underwater Sound (Springer, Switzerland, 2016), Chap. 6.
  11. J. L. Tallon and A. Wolfenden, "Temperature dependence of the elastic constants of aluminium," J. Phys. Chem. Solids, 40, 831-837 (1979). https://doi.org/10.1016/0022-3697(79)90037-4
  12. K. Salama, J. J.Wang, and G. C.Barber, "The use of the temperature dependence of ultrasonic velocity to measure residual stress," Review of progress in Quantitative nondestructive evaluation, 1355-1365 (1983).
  13. R. V. Sukesha, and N. Kumar, "Variation of piezoelectric coefficient and dielectric constant with electric field and temperature: A review," Proc. 2014 RAECS UIET Panjab University Chandigarh (2014).
  14. M. W. Hooker, "Properties of PZT-Based Piezoelectric Ceramics Between -$150^{\circ}C\;and\;250^{\circ}C$," NASA Rep., CR-1998-208708, 1998.
  15. P. H. Mott, C. M. Roland, and R. D. Corsaro, "Acoustic and dynamic mechanical properties of a polyurethane rubber," J. Acoust. Soc. Am. 111, 1782-1790 (2002). https://doi.org/10.1121/1.1459465
  16. R. N. Capps, "Dynamic Young's moduli of some commercially available polyurethanes," J. Acoust. Soc. Am. 73, 2000-2005 (1983). https://doi.org/10.1121/1.389566