• Title/Summary/Keyword: SOM pattern

Search Result 73, Processing Time 0.025 seconds

A Study on the EMG Pattern Recognition Using SOM-TVC Method Robust to System Noise (시스템잡음에 강건한 SOM-TVC 기법을 이용한 근전도 패턴 인식에 관한 연구)

  • Kim In-Soo;Lee Jin;Kim Sung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.6
    • /
    • pp.417-422
    • /
    • 2005
  • This paper presents an EMG pattern classification method to identify motion commands for the control of the artificial arm by SOM-TVC(self organizing map - tracking Voronoi cell) based on neural network with a feature parameter. The eigenvalue is extracted as a feature parameter from the EMG signals and Voronoi cells is used to define each pattern boundary in the pattern recognition space. And a TVC algorithm is designed to track the movement of the Voronoi cell varying as the condition of additive noise. Results are presented to support the efficiency of the proposed SOM-TVC algorithm for EMG pattern recognition and compared with the conventional EDM and BPNN methods.

A Study on the Partial Discharge Pattern Recognition by Use of SOM Algorithm (SOM 알고리즘을 이용한 부분방전 패턴인식에 대한 연구)

  • Kim Jeong-Tae;Lee Ho-Keun;Lim Yoon Seok;Kim Ji-Hong;Koo Ja-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.10
    • /
    • pp.515-522
    • /
    • 2004
  • In this study, we tried to investigate that the advantages of SOM(Self Organizing Map) algorithm such as data accumulation ability and the degradation trend trace ability would be adaptable to the analysis of partial discharge pattern recognition. For the purpose, we analyzed partial discharge data obtained from the typical artificial defects in GIS and XLPE power cable system through SOM algorithm. As a result, partial discharge pattern recognition could be well carried out with an acceptable error by use of Kohonen map in SOM algorithm. Also, it was clarified that the additional data could be accumulated during the operation of the algorithm. Especially, we found out that the data accumulation ability of Kohonen map could make it possible to suggest new patterns, which is impossible through the conventional BP(Back Propagation) algorithm. In addition, it is confirmed that the degradation trend could be easily traced in accordance with the degradation process. Therefore, it is expected to improve on-site applicability and to trace real-time degradation trends using SOM algorithm in the partial discharge pattern recognition

Fuzzy TAM Network Model Using SOM (SOM을 이용한 퍼지 TAM 네트워크 모델)

  • Hong, Jung-Pyo;Hwang, Seung-Gook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.642-646
    • /
    • 2006
  • The fuzzy TAM(Topographical Attentive Mapping) network is a supervised method of pattern analysis which is composed of input layer, category layer, and output layer. But if we don't know the target value of the pattern, the network can not be trained. In this case, the target value can be replaced by a result induced by using an unsupervised neural network as the SOM (Self-organizing Map). In this paper, we apply the results of SOM to fuzzy TAM network and show its usefulness through the case study.

Comparative Analysis of BP and SOM for Partial Discharge Pattern Recognition (부분방전 패턴인식에 대한 BP 및 SOM 알고리즘 비교 분석)

  • Lee, Ho-Keun;Kim, Jeong-Tae;Lim, Yoon-Seok;Kim, Ji-Hong;Koo, Ja-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1930-1932
    • /
    • 2004
  • SOM(Self Organizing Map) algorithm which has some advantages such as data accumulation ability and the degradation trend trace ability was compared with conventionally used BP(Back Propagation) algorithm. For the purpose, partial discharge data were acquired and analysed from the artificial defects in GIS. As a result, basically the pattern recognition rate of BP algorithm was found out to be better than that of SOM algorithm. However, SOM algorithm showed a great on-site-applicability such as ability of suggesting new-pattern-possibility. Therefore, through increasing pattern recognition rate it is possible to apply SOM algorithm to partial discharge analysis. Also, for the image processing method it is required the normalization of the PRPDA graph. However, due to the normalization both BP and SOM algorithm have shown worse results, so that it is required further study to solve the problem.

  • PDF

A Comparative Study on Neural Network Algorithms for Partial Discharge Pattern Recognition (부분방전 패턴인식기법으로서의 Neural Network 알고리즘 비교 분석)

  • Lee, Ho-Keun;Kim, Jeong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2004.05b
    • /
    • pp.109-112
    • /
    • 2004
  • In this study, the applicability of SOM(Self Organizing Map) algorithm to partial discharge pattern recognition have been investigated. For the purpose, using acquired data from the artificial defects in GIS, SOM algorithm which has some advantages such as data accumulation ability and the degradation trend trace ability was compared with conventionally used BP(Back Propagation) algorithm. As a result, basically BP algorithm was found out to be better than SOM algorithm. Therefore, it is needed to apply SOM algorithm in combination with BP algorithm in order to improve on-site applicability using the advantages of SOM. Also, for the pattern recognition by use of PRPDA(Phase Resolved Partial Discharge Analysis) it is required the normalization of the PRPDA graph. However, in case of the normalization both BP and SOM algorithm have shown worse results, so that it is required further study to solve the problem.

  • PDF

Postprocessing Algorithm of Fingerprint Image Using Isometric SOM Neural Network (Isometric SOM 신경망을 이용한 지문 영상의 후처리 알고리듬)

  • Kim, Sang-Hee;Kim, Yung-Jung;Lee, Sung-Koo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.110-116
    • /
    • 2008
  • This paper presents a new postprocessing method to eliminate the false minutiae, that caused by the skelectonization of fingerprint image, and an image compression method using Isometric Self Organizing Map(ISOSOM). Since the SOM has simple structure, fast encoding time, and relatively good classification characteristics, many image processing areas adopt this such as image compression and pattern classification, etc. But, the SOM shows limited performances in pattern classification because of it's single layer structure. To maximize the performance of the pattern classification with small code book, we a lied the Isometric SOM with the isometry of the fractal theory. The proposed Isometric SOM postprocessing and compression algorithm of fingerprint image showed good performances in the elimination of false minutiae and the image compression simultaneously.

Input Pattern Vector Extraction and Pattern Recognition of Taste using fMRI (fMRI를 이용한 맛의 입력패턴벡터 추출 및 패턴인식)

  • Lee, Sun-Yeob;Lee, Yong-Gu;Kim, Dong-Ki
    • Journal of radiological science and technology
    • /
    • v.30 no.4
    • /
    • pp.419-426
    • /
    • 2007
  • In this paper, the input pattern vectors are extracted and the learning algorithms is designed to recognize taste(bitter, sweet, sour and salty) pattern vectors. The signal intensity of taste are used to compose the input pattern vectors. The SOM(Self Organizing Maps) algorithm for taste pattern recognition is used to learn initial reference vectors and the ot-star learning algorithm is used to determine the class of the output neurons of the sunclass layer. The weights of the proposed algorithm which is between the input layer and the subclass layer can be learned to determine initial reference vectors by using SOM algorithm and to learn reference vectors by using LVQ(Learning Vector Quantization) algorithm. The pattern vectors are classified into subclasses by neurons in the subclass layer, and the weights between subclass layer and output layer are learned to classify the classified subclass, which is enclosed a class. To classify the pattern vectors, the proposed algorithm is simulated with ones of the conventional LVQ, and it is confirmed that the proposed learning method is more successful classification than the conventional LVQ.

  • PDF

Input Pattern Vector Extraction and Pattern Recognition of EEG (뇌파의 입력패턴벡터 추출 및 패턴인식)

  • Lee, Yong-Gu;Lee, Sun-Yeob;Choi, Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.95-103
    • /
    • 2006
  • In this paper, the input pattern vectors are extracted and the learning algorithms is designed to recognize EEG pattern vectors. The frequency and amplitude of alpha rhythms and beta rhythms are used to compose the input pattern vectors. And the algorithm for EEG pattern recognition is used SOM to learn initial reference vectors and out-star learning algorithm to determine the class of the output neurons of the subclass layer. The weights of the proposed algorithm which is between the input layer and the subclass layer can be learned to determine initial reference vectors by using SOM algorithm and to learn reference vectors by using LVQ algorithm, and pattern vectors is classified into subclasses by neurons which is being in the subclass layer, and the weights between subclass layer and output layer is learned to classify the classified subclass, which is enclosed a class. To classify the pattern vectors of EEG, the proposed algorithm is simulated with ones of the conventional LVQ, and it was a confirmation that the proposed learning method is more successful classification than the conventional LVQ.

  • PDF

Principal Components Self-Organizing Map PC-SOM (주성분 자기조직화 지도 PC-SOM)

  • 허명회
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.321-333
    • /
    • 2003
  • Self-organizing map (SOM), a unsupervised learning neural network, has been developed by T. Kohonen since 1980's. Main application areas were pattern recognition and text retrieval. Because of that, it has not been spread to statisticians until late. Recently, SOM's are frequently drawn in data mining fields. Kohonen's SOM, however, needs improvements to become a statistician's standard tool. First, there should be a good guideline as for the size of map. Second, an enhanced visualization mode is wanted. In this study, principal components self-organizing map (PC-SOM), a modification of Kohonen's SOM, is proposed to meet such needs. PC-SOM performs one-dimensional SOM during the first stage to decompose input units into node weights and residuals. At the second stage, another one-dimensional SOM is applied to the residuals of the first stage. Finally, by putting together two stages, one obtains two-dimensional SOM. Such procedure can be easily expanded to construct three or more dimensional maps. The number of grid lines along the second axis is determined automatically, once that of the first axis is given by the data analyst. Furthermore, PC-SOM provides easily interpretable map axes. Such merits of PC-SOM are demonstrated with well-known Fisher's iris data and a simulated data set.

The Hybrid LVQ Learning Algorithm for EMG Pattern Recognition (근전도 패턴인식을 위한 혼합형 LVQ 학습 알고리즘)

  • Lee Yong-gu;Choi Woo-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.2 s.34
    • /
    • pp.113-121
    • /
    • 2005
  • In this paper, we design the hybrid learning algorithm of LVQ which is to perform EMG pattern recognition. The proposed hybrid LVQ learning algorithm is the modified Counter Propagation Networks(C.p Net. ) which is use SOM to learn initial reference vectors and out-star learning algorithm to determine the class of the output neurons of LVa. The weights of the proposed C.p. Net. which is between input layer and subclass layer can be learned to determine initial reference vectors by using SOM algorithm and to learn reference vectors by using LVd algorithm, and pattern vectors is classified into subclasses by neurons which is being in the subclass layer, and the weights which is between subclass layer and class layer of C.p. Net. is learned to classify the classified subclass. which is enclosed a class . To classify the pattern vectors of EMG. the proposed algorithm is simulated with ones of the conventional LVQ, and it was a confirmation that the proposed learning method is more successful classification than the conventional LVQ.

  • PDF