• 제목/요약/키워드: SOM(Self-Organizing Map) neural networks

검색결과 30건 처리시간 0.025초

셀 생산방식에서 자기조직화 신경망과 K-Means 알고리즘을 이용한 기계-부품 그룹형성 (Machine-Part Grouping in Cellular Manufacturing Systems Using a Self-Organizing Neural Networks and K-Means Algorithm)

  • 이상섭;이종섭;강맹규
    • 산업경영시스템학회지
    • /
    • 제23권61호
    • /
    • pp.137-146
    • /
    • 2000
  • One of the problems faced in implementing cellular manufacturing systems is machine-part group formation. This paper proposes machine-part grouping algorithms based on Self-Organizing Map(SOM) neural networks and K-Means algorithm in cellular manufacturing systems. Although the SOM spreads out input vectors to output vectors in the order of similarity, it does not always find the optimal solution. We rearrange the input vectors using SOM and determine the number of groups. In order to find the number of groups and grouping efficacy, we iterate K-Means algorithm changing k until we cannot obtain better solution. The results of using the proposed approach are compared to the best solutions reported in literature. The computational results show that the proposed approach provides a powerful means of solving the machine-part grouping problem. The proposed algorithm Is applied by simple calculation, so it can be for designer to change production constraints.

  • PDF

HVS와 신경회로망을 이용한 디지털 워터마킹 (Digital Watermarking using HVS and Neural Network)

  • 이영희;이문희;차의영
    • 컴퓨터교육학회논문지
    • /
    • 제9권2호
    • /
    • pp.101-109
    • /
    • 2006
  • 본 논문에서는 DCT 도메인에서 영상의 블록에 대한 분류에 따라 다른 블록들에 삽입될 워터마크의 강도를 적용적으로 조절하여 워터마크를 삽입하기 위해 인간 시각 시스템(HVS)과 선경회로망 중 SOM(Self-Organizing Map)을 이용한 적용적 디지털 이미지 워터마킹을 제안한다. 인간 시각 시스템을 기반으로 하여 블록의 특정벡터를 찾아낸다. 블록의 특정벡터를 입력으로 SOM에 의해 블록들은 4등급으로 분류된다. 이들 중 3개의 등급에 속하는 블록을 선택하여 DCT 계수들 중 DC성분을 제외한 저주파 성분을 가지는 6개의 계수들을 선택하여 워터마크를 삽입한다. 실험을 통해 새로 제안된 알고리즘은 좋은 화질을 얻을 수 얻을 수 있었고 JPEG 압축, 영상처리, 기하학적 변환과 잡음과 같은 공격에 아주 강인하였다.

  • PDF

강우-유출특성 분석을 위한 자기조직화방법의 적용 (Application of Self-Organizing Map for the Analysis of Rainfall-Runoff Characteristics)

  • 김용구;진영훈;박성천
    • 대한토목학회논문집
    • /
    • 제26권1B호
    • /
    • pp.61-67
    • /
    • 2006
  • 강한 비선형성의 경향을 보이고 있는 강우-유출간의 관계를 모형화하기 위한 연구는 다양한 방법론으로 적용되어 활발히 연구되고 있다. 그 중에서 인공신경망을 이용하여 강우-유출간의 관계를 모형화하기 위한 대부분의 연구들은 역전파 학습 알고리즘(back propagation algorithm: BPA), Levenberg Marquardt(LV), radial basis function(RBF)을 이용하였으며, 이들은 강한 비선형성을 나타내는 입 출력간의 관계를 나타내는데 탁월한 성능을 보이고 있는 것으로 알려져 있고, 자료들의 급격한 변화나 현저한 변화에 대한 뛰어난 적응성을 보여주고 있다. 이러한 인공신경망 이론은 예측뿐만이 아니라 대상자료들의 양상을 분류하여 그 특성을 분석하는 데에도 이용되고 있다. 따라서 본 연구에서는 강우-유출과정의 양상에 따른 분류와 그에 따른 분석을 위해 Kohonen 네트워크 이론에 의한 자기조직화 방법(self-organizing map; SOM)을 적용하였다. 본 연구에서 제시한 방법을 이용한 결과, 강우의 시 공간적 분포의 불규칙한 변동성을 고려한 강우양상을 분류 할 수 있었으며, 강우-유출간의 특성을 분석한 결과 강한 비선현성을 가지고 있는 강우-유출관계가 SOM에 의해 7개의 패턴으로 구분되었다.

강우-유출 예측모형 개발을 위한 자기조직화 이론의 적용 (Application of Self-Organizing Map Theory for the Development of Rainfall-Runoff Prediction Model)

  • 박성천;진영훈;김용구
    • 대한토목학회논문집
    • /
    • 제26권4B호
    • /
    • pp.389-398
    • /
    • 2006
  • 본 연구에서는 강우의 시 공간적 분포의 불규칙한 변동성을 고려한 강우-유출예측모형을 위해 인공신경망(Artificial Neural Networks: ANNs)의 기법의 일종인 자기조직화(Self Organizing Map: SOM) 이론과 역전파 학습 알고리즘(Back Propagation Algorithm: BPA을 복합적으로 이용하였다. 기존의 인공신경망 연구에서 야기된 저 갈수기의 유출량에 대한 과대평가, 홍수기의 유출량에 대한 과소평가, 예측값이 연속적으로 선행 유출량을 나타내는 Persistence 현상을 해결하기 위하여 패턴분류 성능을 지닌 SOM 이론을 예측모형의 전처리 과정으로 이용하였다. 먼저, 본 연구에서 제안한 방법은 SOM에 의해 강우-유출 관계를 분류하고, SOM에 의한 분류에 따라 각각의 모형을 구성한다. 개별적으로 구축된 모형은 유출량의 예측을 위해 각각의 양상에 따라 분류된 자료를 이용한다. 결과적으로 본 연구에서 제안한 방법은 과거의 인공신경망의 일반적인 적용에 의한 결과보다 더 나은 예측능력을 보여주었으며, 더불어 유출량의 과소 및 과대추정과 Persistence 현상과 같은 문제점이 나타나지 않았다.

호소수의 강우-저류량 및 TOC변동 특성분석을 위한 자기조직화 방법의 적용 (Application of Self-Organizing Map for the Characteristics Analysis of Rainfall-Storage and TOC Variation in a Lake)

  • 김용구;진영훈;정우철;박성천
    • 한국물환경학회지
    • /
    • 제24권5호
    • /
    • pp.611-617
    • /
    • 2008
  • It is necessary to analysis the data characteristics of discharge and water quality for efficient water resources management, aggressive alternatives to inundation by flood and various water pollution accidents, the basic information to manage water quality in lakes and to make environmental policy. Therefore, the present study applied Self-Organizing Map (SOM) showing excellent performance in classifying patterns with weights estimated by self-organization. The result revealed five patterns and TOC versus rainfall-storage data according to the respective patterns were depicted in two-dimensional plots. The visualization presented better understanding of data distribution pattern. The result in the present study might be expected to contribute to the modeling procedure for data prediction in the future.

인공신경망에 의한 생물공정에서 2차원 형광스펙트럼의 분석 I - 자기조직화망에 의한 형광스펙트럼의 분류 - (Analysis of Two-Dimensional Fluorescence Spectra in Biotechnological Processes by Artificial Neural Networks I - Classification of Fluorescence Spectra using Self-Organizing Maps -)

  • 이금일;임용식;김춘광;이승현;정상욱;이종일
    • KSBB Journal
    • /
    • 제20권4호
    • /
    • pp.291-298
    • /
    • 2005
  • 본 연구는 재조합 대장균과 S.cerevisiae의 발효공정에서 형광스펙트럼 데이터를 수집하였으며, SOM을 이용하여 형광스펙트럼 데이터를 특정 그룹으로 분류하고 발효공정을 분석하고자 하였다. 배출가스 내 이산화탄소농도와 세포농도 같은 공정변수들은 SOM 알고리즘으로부터 얻은 분산 및 정규화된 가중치들과 좋은 연관성을 나타내었다. 전체 스펙트럼 데이터의 분류는 생물공정 모델링을 위한 매우 중요한 단계인데 그 이유는 몇몇 여기파장과 방출파장의 유의한 조합들이 전체영역의 스펙트럼 데이터로부터 추출되기 때문이다. 예를 들면, 본 연구에서 SOM을 이용하여 추출한 98개의 스펙트럼 데이터의 예제들은 부분최소자승법이나 감독신경망 (supervised neural network)을 이용한 공정의 모델링에 사용될 수 있다.

SOM에 강우-유출 예측모형 개발에 관한 연구 (Development of Rainfall-Runoff Prediction Model for Self Organizing Map)

  • 김용구;진영훈;이한민;박성천
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.301-306
    • /
    • 2006
  • 본 연구에서는 강우의 시 공간적 분포의 불규칙한 변동성을 고려한 강우-유출예측을 위해 인공신경망(Artificial Neural Networks: ANNs)의 기법의 일종인 자기조직화(Self Organizing Map: SOM) 이론과 역전파 학습 알고리즘(Back Propagation Algorithm: BPA) 이론을 복합적으로 이용하였다. 기존의 인공신경망 연구에서 야기된 저..갈수기의 유출량에 대한 과대평가, 홍수기의 유출량에 대한 과소평가, 예측값이 선행 유출량의 지속성을 갖는 Persistence 현상을 해결하기 위하여 패턴분류 성능을 지닌 SOM 이론을 도입하여 예측모형의 전처리 과정으로 이용하였다. 이는 기존의 인공신경망 모형이 하나의 모형을 구성하여 유출량의 전 범위에 해당하는 자료를 예측하는 방법을 개선한 것으로 SOM에 의해 패턴이 분류된 강우-유출관계의 각 패턴별 예측모형을 통해 분류된 자료들의 예측을 수행하는 방법이다. 이와 같이 SOM을 강우-유출예측모형의 전처리과정으로 이용함으로서 기존의 인공신경망 연구에서 야기된 현상들을 해결할 수 있었고, 예측력 또한 기존의 인공신경망 모형의 결과에 비해 우수하였다.

  • PDF

인공신경회로망을 이용한 서해안 겨울철 수조류의 발생특성 유형화 (Patterning Waterbirds Occurrences at the Western Costal Area of the Korean Peninsula in Winter Using a Self-organizing Map)

  • 박영석;이후승;남형규;이기섭;유정칠
    • 환경생물
    • /
    • 제25권2호
    • /
    • pp.149-157
    • /
    • 2007
  • 본 연구는 우리나라 서해안에서 월동하는 수조류 군집의 특성 및 환경요인에 따른 분포 특성을 밝히고자 수행되었다. 수조류 군집조사는 10개 지역에서 실시되었으며, 환경요인으로 토지피복도 비율을 측정하였다. 전체 조사지역에서 종 구성은 수면성 오리류가 84%로 가장 높은 비율을 나타냈고, 그 외 잠수성 오리류, 섭금류, 기러기류, 갈매기류 등이 많이 관찰되었다. 가장 높은 우점도를 나타낸 종은 청둥오리(Anas platyrhynchos)였으며 다음으로 가창오리(Anas formosa)가 차지하였다. 비지도 학습법 인공신경회로망인 self-organizing map(SOM)을 이용한 월동 수조류 군집을 유형화 한 결과 수조류 군집은 6개의 그룹으로 구분되었다. 각 그룹은 서식지의 특성에 따라 명확히 구분되어 서식지의 공간특성을 잘 반영해 주었으며, 또한 조사 시기에 따른 군집의 차이도 잘 나타내 주었다.

SOM 적용을 위한 Map Size와 Array의 변화에 따른 강우-유출 및 TOC관계 분석 (Analysis of Classification Characteristics for Rainfall-runoff and TOC Variation according to the Change of Map Size and Array using SOM)

  • 박성천;김용구;노경범;이한민
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.2066-2070
    • /
    • 2008
  • 본 연구는 인공신경망(Artificial Neural Networks: ANNs)기법의 일종인 자기조직화(Self Organizing Map: SOM) 이론을 이용한다. 자기조직화 특성을 이용하여 스스로 학습이 가능하고, 구조상 수행이 빨라 학습 단계에 소요되는 시간을 줄 일 수 있는 장점을 가진 자기조직화 이론을 도입하고, 수질자료 중 전체 유기물의 양을 나타내며 난분해성 물질에 대한 해석이 가능하고 재현성이 탁월한 TOC 와 강우-유출량 자료의 분포적 양상과 특징을 분석하여 예측을 위한 모형화 과정에 기여하고자 한다. 최적의 Map Size와 Map Array 결정을 위해 수집된 강우와 유출량자료 및 TOC 자료에 대해 Garcia의 경험식을 이용하여 Map을 구성하는 단위구조의 총 수(M)를 산정하여 M값에 따른 종방향 및 횡방향 크기를 결정하는 다수의 Map 크기를 검토하고, 또한 Map 배열은 2차원 배열의 사각형배열(Rectangular array)과 육각형배열(Hexagonal array)에 대해서도 복합적으로 검토하여 최적의 특성조건을 결정하여 강우-유출 및 TOC 관계의 분할특성을 분석한다.

  • PDF

반도체 제조공정에서의 이상수율 검출 방법론 (A New Abnormal Yields Detection Methodology in the Semiconductor Manufacturing Process)

  • 이장희
    • Journal of Information Technology Applications and Management
    • /
    • 제15권1호
    • /
    • pp.243-260
    • /
    • 2008
  • To prevent low yields in the semiconductor industry is crucial to the success of that industry. However, to prevent low yields is difficult because of too many factors to affect yield variation and their complex relation in the semiconductor manufacturing process. This study presents a new efficient detection methodology for detecting abnormal yields including high and low yields, which can forecast the yield level of a production unit (namely a lot) based on yield-related feature variables' behaviors. In the methodology, we use C5.0 to identify the yield-related feature variables that are the combination of correlated process variables associated with yield, use SOM (Self-Organizing Map) neural networks to extract and classify significant patterns of past abnormal yield lots and finally use C5.0 to generate classification rules for detecting abnormal yield lot. We illustrate the effectiveness of our methodology using a semiconductor manufacturing company's field data.

  • PDF