• Title/Summary/Keyword: SOIL NUTRIENTS

Search Result 784, Processing Time 0.035 seconds

Effect of Inoculation with Vesicular-Arbuscular Mycorrhizal (VAM) Fungi on the Early Growth of Strawberry Plantlets(Fragaria grandiflora Ehrn.) (딸기 묘(苗) 초기생육(初期生育)에 미치는 VA균근균(菌根菌)의 접종효과(接種效果))

  • Sohn, Bo-Kyoon;Huh, Sang-Man;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.1
    • /
    • pp.54-63
    • /
    • 1994
  • Runner-derived(Expt.1) and tissue culture-derived strawbeery plantlets(Expt. 2) were grown in pots under greenhouse condition and inoculated with inocula of the vesicular-arbuscular mycorrhizal(VAM) fungi isolated from a field strawberry plants. Total biomass of mycorrhizal strawberry plants was significantly increased. There was a similar tendency in the number of cluster and flower at 20 weeks after inoculation, and VAM fungi inoculation positively influenced the leaf number, leaf length, leaf width and petiole length of strawberry plants in all investigated times. However, no difference was in the flowering time of strawberry plants. Leaf margin of non-inoculated strawberry plantlets turned into raddish brown(7.5R 4/8) from around 4 weeks after habituation. Inoculation of VAM fungi at the time of habituation was much more effective in stimulating plant growth. VA mycorrhizal dependency were 162.7 % in the runner-derived strawberry plants, Dependency with pre-and post-habituated incoulation in tissue culture-derived plants was respective 116.4% and 106.0%. The levels of mycorrhizal colonization were increased with plant growth and infection rates by endophytes at harvest time were 47.5% in Expt. 1, 56.4% in Expt. 2, respectively. Contents of phosphorus, potassium and calcium in mycorrhizal strawberry plants at harvest time were higher than non-mycorrhizal ones however, magnesium concentration was decreased. These experiments demonstrated that VAM fungi could be introduced into nursery stages of strawberry plantlets including the temporary planting period to improve growth and plant nutrients uptake by mycorrhizal plants.

  • PDF

Study on the Screening System of Organic Resources for Agricultural Utilization (유기성 자원의 농업적 활용을 위한 선별체계 연구)

  • Lim, Dong-Kyu;Lee, Seung-Hwan;Kwon, Soon-Ik;So, Kyu-Ho;Sung, Ki-Suk;Koh, Mun-Hwan;Lee, Jeong-Taek
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.2
    • /
    • pp.92-100
    • /
    • 2005
  • This study was conducted to find suitable methods for screening organic resources useful for compost. Twenty-seven industrial and domestic sludges were collected from various cities and industrial areas. Contents of organic matters in the sludges were in the range of 79.3-98.0%, and the contents were much higher than the regulation level (60%) for raw materials of compost. Contents of total nitrogen were in the range of 0.8-2.6%. Contents of Fe and Al were very high. Content of HEM was highest in textile sludge ($257mg\;kg^{-1}$) and the contents in the others were in the range of $12.6-90.3mg\;kg^{-1}$. Content of PAHs was lowest in food sludge ($739.1{\mu}g\;kg^{-1}$ and pulp-mill sludge had the highest PAHs content ($3461.8{\mu}g\;kg^{-1}$). $Microtox^{(R)}$ $EC_{50}$ values were higher in the sludges which were classified as a possible material in composting after analysis and investigation. Lettuce root elongation and $EC_{50}$ values were relatively lower in pulp-mill sludge, sewage sludge 3 (Large city), food sludge and leather sludge. Therefore, mineral nutrients, heavy metals, organic compounds (HEM, PAHs, PCBs), and bioassay ($Microtox^{(R)}$ $EC_{50}$, Relative root elongation test) are recommended to be included in the screening system of raw material of compost in addition to the current regulation with organic matter and 8 heavy metals.

Comparison of Liquefying Efficiency of Mixed Organic Fertilizer as Affected by Aeration Time and the Ratio of Organic Fertilizer to Water (폭기시간과 유기질비료 농도에 따른 혼합유기질비료의 액비화 특성비교)

  • Lee, Jong-Tae;Ha, In-Jong;Moon, Jin-Seong;Song, Won-Doo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.2
    • /
    • pp.156-163
    • /
    • 2007
  • This study was conducted to evaluate the liquefying efficiency of mixed organic fertilizer in different conditions. The organic fertilizer was composed of sesame oil cake, rice bran, fish meal, ground bone meal etc, and made by fermenting process. It included $23g\;kg^{-1}$, $17.0g\;kg^{-1}$, $23.9g\;kg^{-1}$, $290g\;kg^{-1}$ of N, $P_2O_5$, $K_2O$, organic matter, respectively. In one test, the mixed organic fertilizer was added in the proportion of 10% to water 90% and aerated continuously, for 2, 8 hours per day, and not aerated as control. In the other test, ratios of organic fertilizer to water were 5%, 10%, 20% and aerated for 2 hours a day. With the increase of liquefying time, pH, EC and $NH_4-N$ increased without relation to aeration time. After 10 days, liquid organic fertilizer aerated for 2 hours a day contained $634mg\;N\;kg^{-1}$, $68.1mg\;P_2O_5\;kg^{-1}$, $453mg\;K_2O\;kg^{-1}$, which was not significantly different from 8 hours a day or continuous aeration. Then extraction ratios of inorganic contents were 27.6%, 4.0% and 18.9%, respectively. Continuous aeration resulted in increasing the viable number of aerobic bacteria, spore forming bacteria and fungi in liquefied solution. Higher ratio of organic fertilizer to water increased EC, $NH_4-N$ and other inorganic matter contents, but decreased extraction ratio of nutrients in liquid fertilizer. The liquid organic fertilizer of 20% contained $1,140mg\;N\;kg^{-1}$, $35.4mg\;P_2O_5\;kg^{-1}$, $544mg\;K_2O\;kg^{-1}$ after 10 days. Then extraction ratios were 24.8%, 2.4% and 13.6%, respectively. The ratio of organic fertilizer to water was positively correlated with only spore forming bacteria, Pseudomonas spp. among microorganisms.

Comparative Analysis of Growth, Yield, and Grain Quality of Hulled Barley Grown Under Different Meteorological Conditions in South Korea (기후분포가 다른 재배지에서 생장한 겉보리 생육, 수량 및 품질 비교)

  • Hyun-Hwa Park;Hyo-Jin Lee;Ye-Guon Kim;Dea-Wook Kim;Yong-In Kuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.2
    • /
    • pp.69-80
    • /
    • 2023
  • This study investigated the differences in barley growth at different growth stages (Dec, Feb, and Apr) and the yield at harvest in three groups (G1, G2, and G3) with different climates. Additionally, we measured meteorological differences between areas during the growing season to determine which factors were related to growth and yield differences. We evaluated the chemical composition of soil and the mineral content in leaves during the heading stages. We also recorded the main constituents, amino acids, and mineral compositions of barley seeds grown in different areas. Tiller number/m2 in G1 areas was higher than in G2 and G3 when measured before and after overwintering. However, tiller number/m2 and dry aboveground plant parts/m2 in G2 and G3 areas were higher than in G1. Regrowth, panicle formation, and heading days in G2 areas occurred slightly later than in G1 and G3. However, there was no difference in chlorophyll content (SPAD value) between groups. The yield in G1 areas was 9~15% less than in G1 and G3. The decrease in yield in G2 areas could be due to lower panicle number, spikelet number, and ripening rate. In addition, the decrease in yield in G2 areas is likely because maximum, minimum, and average daily temperatures during the growing season were lower than those in G1 and G3. However, mineral nutrients in the soil were higher in the G2 area than in G1 and G3. The overall mineral content in plants tended to be higher in G1 areas than in G2 and G3. Mineral content such as Cu, K, Mg, and P in G3 areas and crude protein and most amino acids in G2 areas tended to be relatively low compared to other areas. Thus, the G1 area may be suitable for barley cultivation without adverse impacts on barley yield, main constituents, amino acids, and mineral contents compared to the main producing areas in G3.

Agronomical studies on the major environmental factors of rice culture in Korea (수도재배의 주요환경요인에 관한 해석적 조사연구)

  • Yung-Sup Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.3
    • /
    • pp.49-82
    • /
    • 1965
  • For the stable and high yields of low-land rice in Korea, the characteristics of rice plant for the vegetative and physiological responses, plant type formation, and yield components have been studied in order to obtain the fundamental data for the improvement of cultural practices, especially for the ideal fertilizer application. Furthermore the environmental conditions in Korea including temperatures, light, precipitation, and soil conditions have been compared in the broad sense with those in Japan, and the application of nitrogen, phosphorus, potassium, silicate and other micro-nutrients were described in relation to the characteristics of environmental conditions for the improvement of fertilizer application. 1. The average yield of polished-rice per 10 are in Korea is about 204 kg and this values are much less than those in Japan and Taiwan where they produce 77% to 13% more than in Korea. The rate of yield increase a year in Korea is 4.2 kg, but in Japan and Taiwan the rates of yield increase a year are 81 % and 62%, respectively. It was also found that the coefficient of variation of yield is 7.7% in Korea, 6.7% in Japan and 2.5% in Taiwan. This means that the stability of producing rice in Korea is very low when compared with those in Japan and Taiwan. 2. It was learned from the results obtained from the 'annual yield estimation experiment' that there are big differences in the respect of plant type formations between rice crops grown in Japan and Korea. The important differences found were as follows: (1) The numbers of spikelets per 3.3 square meters are 891 in Korea and 1, 007 in Japan(13% more than in Korea). (2) The numbers of tillers per 3.3 square meters at the stage of maximum tillering are 1, 150 in Korea, but in Japan they showed 19% more than in Korea. (3) The ratio of effective tillers to total tillers is 77.5% in Korea and 74.7% in Japan, which seems to be higher in Korea than in Japan. But the ratio in Korea is very low when considered the numbers of total tillers in both countries. (4) The ratio of grain to straw is 85.4% in Korea and 96.3% in Japan. 3. The average temperatures during the growing season at the area of Suwon, Kwangjoo and Taegu are almost same as those in the district of Jookokoo(Fookoo yama) in Japan, i.e., the temperatures during the rice-growing season in Korea are similar to those in the southern-warm regions of Japan. 4. Considering the minimum temperatures at the stage of limiting transplanting, 13$^{\circ}C$, the time of transplanting might be 30 to 40 days earlier than presently practicing transplanting time, which comes around June 10. 5. The temperatures during the vegetative growth in Korea were higher than those temperatures that needed in the protein synthesis which ate the main metabolism during this stage. However, the temperatures at the time of reproductive growth was lower than the temperatures that needed in the sugar assimilation which is main metabolism in this stage. In this point of view, it might be considered that the proper time of growing rice plant in Korea would be rather earlier. 6. The temperatures and the day light conditions at the time of first tillering stage of rice plant, when planted as presenting transplanting practices, are very satisfactory, but the poor day light length, high temperatures and too wet conditions in the time of last-tillering stage(mid or last July) might cause the occurrence of disease such as blast. 7. The heading stage of rice plants at each region through nations when planted as presently practicing method comes when the day light length is short. 8. It was shown that the accumulated average air-temperature at the time of maturing stage was not enough and the heading time was too late, when considered the annual deviations of mean temperatures and low minimum temperatures. 9. The nitrogen content of each plant part at the each growing stage was very high at the stage of vegetative growth when compared with the nitrogen content at the stage of reproductive growth after heading. In this respect it was believed to be important to prevent the nutrient shortages at the reproductive stages, especially after the heading. 10. The area of unsatisfactory irrigation paddy fields and natural rain-fed paddy fields are getting reduced in Korea. The correlation between the rate of reducing unsatisfactory irrigation and natural rain-fed paddy fields and the rate of yield increase were computed. The correlation coefficients(r) between the area of unsatisfactory irrigation paddy fields and yield increase were +0.525, and between the natural rain-fed paddy fields and yield increase, +0.832 and between the unsatisfactory irrigation plus natural rain-fed paddy fields and yield increase, +0.84. And there were. highly significant positive correlations between natural rain-fed paddy fields and yield increases indicating that the less the area of natural rain-fed paddy fields, the greater the yields per unit area. 11. The results obtained from the fertilizer experiments (yield performance trials) conducted in both Korea and Japan showed that the yield of non-fertilized plots per 10 are was 231 kg in Korea and 360 kg in Japan. On the basis of this it might be concluded that the fertility of soil in Korea is lower than that in Japan. Furthermore it was. also found that the yields of non-nitrogen applied plots per 10 are were 236 kg in Korea and 383 kg in Japan. This also indicates that the yields of rice in Korea are largely depending on the nitrogen content in the soil. 12. The followings were obtained when the chemical natures of soils in both Korea and Japan were compared. (1) The content of organic matter, total nitrogen, exchangeable calcium, and magnesium in Korea were no more than the half those in Japan. (2) The content of N/2 chloride and soluble silicate in low-land soil were on the average lower in Korea. (3) The exchange capacity of bases in Korea was no more than half that in Japan. 13. It was also observed by comparing the soil nature of the soil with high yielding capacity with the soil with low yielding capacity that the exchange capacity of bases, exchangeable calcium and magnesium, potassium, phosphorus, manganese, silicate and iron were low in the soil with low yielding capacity. 14. The depth of furrow slice was always deeper in the soil with high yielding capacity, and the depth of furrow slice in Korea was also shallower than that in Japan. 15. Summarizing the various conditions mentioned previously and considering the effects of silicate and trace elements such as manganese and iron besides three elements on the physiological and plant type formation of rice crops, more realistic and more ideal fertilizing practices were proposed. proposed.

  • PDF

Study on the Effect of Deep Fertilization on Paddy Field - Efficiency of Ball Complex Fertilizer Mixed with Zeolite - (수도(水稻)에 대(對)한 심층추비효과(深層追肥効果)에 관(關)한 연구(硏究) - Zeolite 첨가(添加) Ball complex 비료(肥料)의 비효(肥効) -)

  • Kim, Tai-Soon;U., Zang-Kual
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.1
    • /
    • pp.61-67
    • /
    • 1977
  • A study was conducted in order to compare the topdressing method of the conventional fertilizers as control and the deep application method of the ball complex fertilizer newly developed. The ball complex fertilizer consisted of 5% of nitrogen, 5% of phosphorus, and 7% of potassium. Basal application of nitrogen for the rice plant was the same for both control plots and ball complex plots. One ball complex fertilizer per four hills was applied at depth of 12~13cm 35days before heading stage while control plot received three times topdressing at different growth stages as usual practice. The results obtained were as follows. 1. The ball complex fertilizer applied in the soil was continuously utilized by the rice plants until harvest time while nitrogen and potassium uptake of control plots was reduced rapidly after heading stage. Daily uptake of nitrogen and potassium per hill at maturing stage were 0.45mg and 0.68mg in control plots, but 4.80mg and 7.0mg respectively in ball complex plots. 2. Dry matter productivity of the rice plant in control plots, well coinciding with nutrients uptake pattern, was maximum just after heading stage decreased at maturing stage. But dry matter productivity in ball complex plots was much higher at maturing stage than at heading stage. 3. Ball complex application increased effective tillering rate, causing higher panicle number per hill. 4. Ball complex application brought about 528kg/10a of hulled grain yield while the conventional practice 423kg/10a. 5. Deep application of ball complex was superior to usual practice in terms of yield components such as panicle number per hill, filled grain number per panicle, maturing rate, and 1,000 grain weight. 6. From the morphological characteristics point of view, the deep application of ball complex made the flag leaf and the 2nd leaf heavier, larger and broader as compared to control treatment. 7. It is considered that by applying the ball complex fertilizer at depth of 12~13cm sufficient amount of nitrogen and potassium could be utilized by rice plants during the maturing stage and assimilated in the leaf blade, consequently making the flag leaf and the 2nd leaf bigger and healthier. The fact can easily explain that the ball complex plots had higher capacity of photosynthesis, less discoloration of lower leaves, bigger leaf area index, and better grain yield as compared to the conventional practice. In conclusion the deep application method of the ball complex fertilizer was superior to the routine topdressing method of the usual fertilizers.

  • PDF

Changed in Growth and Chemical Properties of Plastic Film House by Earthworm Cast on Gymnocalycium mihanovichii var. 'Ihong' (비모란 선인장(Gymnocalycium mihanovichii var. 'Ihong') 시설재배에서 지렁이분변토시용에 따른 생육특성 및 토양 화학성 변화)

  • Choi, I-Jin;Cho, Sang-Tae;Kim, Young-Mun;Kim, Mi-Seon;Lee, Sang-Kweon
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.731-742
    • /
    • 2014
  • In the current study, we investigated effects of a combination of earthworm casting, environment-friendly by-product fertilizer, and cultivation soil of Gymnocalycium mihanovichii in a heavy fertilizing culture on diameter, height, numbers of tubercles, and chemical properties of soil thereby elucidating optimal mixture ratio for securing production as well as providing nutrients throughout cultivation period. The Gymnocalycium mihanovichii var 'Ihong', one of grafted cactus for export (Rootstock: 9 cm, Scion: $1.5{\times}1.3cm$ grafted cactus) was cultured in plastic houses of Agricultural Technology Center located in Naegok-dong, Seocho-gu, Seoul from June, 2013 through December, 2013. For the control group, a mixture of sand and fertilizer (50:50) was used as this ratio is widely utilized in farmhouses. In contrast, a variety mixtures of sand and earthworm casting that was produced with food wastes was compared; the mixture ratios were 80:20, 60:40, 40:60, 20:80, and 0:100 and pH for these mixtures were found to be similar each other (ranging between 7.1 and 7.4) which is in an appropriate range (pH 6.5-7.5) for cultivation of G. mihanovichii. The organic content was increasing along with increasing contents of earthworm casting ratio while it was lower than the treatment practice group (32-43 mg/kg vs. 55 mg/kg). The content of exchangeable cation was also increasing as the ratio of earthworm casting was elevated; although levels of $K^+$, $Na^+$, and $Mg^{2+}$ were lower than the treatment practice group, the level of $Ca^{2+}$ was higher ($9.1cmol^+/kg$ and $11.5-33.7cmol^+/kg$ in the treatment practice group and the earthworm casting group, respectively). Three months after grafting, diameters of G. mihanovichii were compared with the control group; consequently, there was a significant difference noted in between the earthworm casting group and the control group (31.39 mm vs. 32.46-37.59 mm). After 5 months, growth characteristics of G. mihanovichii were evaluated. Similarly, the diameter of G. mihanovichii was significantly increasing in the group with higher ratio of earthworm casting treatment (32.63 mm vs. 32.49-37.59 mm). The height of tubercles was 2.63 mm in the control group while it was significantly elevating along with the ratio of earthworm casting mixture. The more numbers of tubercles, the more incomes for farm-houses; as results, higher mixture ration of earthworm casting resulted more numbers of tubercles compared to the control group (2.7 vs. 3.2-8.3 ea). In particular, in the earthworm casting groups with 80% and 100% ratios, the numbers of tubercles were 6.2 and 8.3 ea, respectively, which is 2.5 times more than those of the control group. These results indicate that earthworm casting treatment may be utilized in G. mihanovichii farming houses for short term production of tubercles. In the group with 40% and 60% of earthworm casting mixture, the numbers of tubercles were found to be 4.5 and 4.8 ea, respectively which is higher than the control group as well; in these groups, there were no issues with soil drainage as well as moss formation. Given the analysis results of growth characteristics of G. mihanovichii, it was concluded that 40% and 60% of earthworm casting mixture might be the optimal ratios.

Influence of Fertilizer Type on Physiological Responses during Vegetative Growth in 'Seolhyang' Strawberry (생리적 반응이 다른 비료 종류가 '설향' 딸기의 영양생장에 미치는 영향)

  • Lee, Hee Su;Jang, Hyun Ho;Choi, Jong Myung;Kim, Dae Young
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • Objective of this research was to investigate the influence of compositions and concentrations of fertilizer solutions on the vegetative growth and nutrient uptake of 'Seolhyang' strawberry. To achieve this, the solutions of acid fertilizer (AF), neutral fertilizer (NF), and basic fertilizer (BF) were prepared at concentrations of 100 or $200mg{\cdot}L^{-1}$ based on N and applied during the 100 days after transplanting. The changes in chemical properties of the soil solution were analysed every two weeks, and crop growth measurements as well as tissue analyses for mineral contents were conducted 100 days after fertilization. The growth was the highest in the treatments with BF, followed by those with NF and AF. The heaviest fresh and dry weights among treatments were 151.3 and 37.8 g, respectively, with BF $200mg{\cdot}L^{-1}$. In terms of tissue nutrient contents, the highest N, P and Na contents, of 3.08, 0.54, and 0.10%, respectively, were observed in the treatment with NF $200mg{\cdot}L^{-1}$. The highest K content was 2.83%, in the treatment with AF $200mg{\cdot}L^{-1}$, while the highest Ca and Mg were 0.98 and 0.42%, respectively, in BF $100mg{\cdot}L^{-1}$. The AF treatments had higher tissue Fe, Mn, Zn, and Cu contents compared to those of NF or BF when fertilizer concentrations were controlled to equal. During the 100 days after fertilization, the highest and lowest pH in soil solution of root media among all treatments tested were 6.67 in BF $100mg{\cdot}L^{-1}$ and 4.69 in AF $200mg{\cdot}L^{-1}$, respectively. The highest and lowest ECs were $5.132dS{\cdot}m^{-1}$ in BF $200mg{\cdot}L^{-1}$ and $1.448dS{\cdot}m^{-1}$ in BF $100mg{\cdot}L^{-1}$, respectively. For the concentrations of macronutrients in the soil solution of root media, the AF $200mg{\cdot}L^{-1}$ treatment gave the highest $NH_4$ concentrations followed by NF $200mg{\cdot}L^{-1}$ and AF $100mg{\cdot}L^{-1}$. The K concentrations in all treatments rose gradually after day 42 in all treatments. When fertilizer concentrations were controlled to equal, the highest Ca and Mg concentrations were observed in AF followed by NF and BF until day 84 in fertilization. The BF treatments produced the highest $NO_3$ concentrations, followed by NF and AF. The trends in the change of $PO_4$ concentration were similar in all treatments. The $SO_4$ concentrations were higher in treatments with AF than those with NF or BF until day 70 in fertilization. These results indicate that compositions of fertilizer solution should to be modified to contain more alkali nutrients when 'Seolhyang' strawberry is cultivated through inert media and nutri-culture systems.

The Effects of Cattle Slurry Application and Mixed Sowing with legumes on Productivity and Feed Values of Barley and Rye (액상우분뇨와 콩과식물 혼파재배가 보리, 호밀의 생산성과 사료가치에 미치는 영향)

  • Jo, IK-Hwan
    • Korean Journal of Organic Agriculture
    • /
    • v.17 no.3
    • /
    • pp.371-380
    • /
    • 2009
  • This study was conducted to assess effects of supplying different types of nitrogen sources as fertilizers on productivity and feed values of barley and rye as winter forage crops, and ultimately done to get good quality of organic forages with higher fertilization of soil. For barley, N+P+K plots were significantly (P<0.05) higher in annual dry matter (DM) and total digestible nutrients (TDN) yields than other plots. However, cattle manure plots had significantly (P<0.05) higher annual DM and TDN than P+K and non-fertilizer plots. Plots of 50%-cattle manure and mixed sowing with hairy vetch or forage pea were higher than only 50%-cattle manure plot, particularly, these were significantly higher than non-fertilizer, and their crude protein (CP) yields were much higher than other plots. Crude protein contents were significantly higher in N+P+K and 50%-cattle manure slurry plots than non-fertilizer and P+K plots, and plots of mixed sowing with hairy vetch or forage pea in application of 50%-cattle manure had higher CP content than other plots. ADF content was lowest in 50%-cattle manure+forage pea plots, but highest in 100%-cattle manure plots. NDF content was lowest in legumes-mixed sowing, but highest in 100%-cattle manure plots. TDN content was the highest in forage pea plots, and plots of 50%-cattle manure and legumes-mixed sowing had high RFV, but cattle manure plots rich in ADF and NDF content had the lowest TDN and RFV. For rye, plots of 50%-cattle manure+hairy vetch mixed sowing, and N+P+K application had significantly higher annual DM, CP and TDN than other plots except for cattle manure. DM productive efficiency to nitrogen fertilization was markedly higher for cattle manure plots than for chemical fertilizer. This tendency was more conspicuous in plots of 50% cattle manure+legumes-mixed sowing. CP content was higher for N+P+K plot than for all plots, and plots of 50%-cattle manure + legumes-mixed sowing were significantly higher than other plots. On the contrary, forage pea-mixed sowing plot had the lowest ADF and NDF, but TDN and RFV were significantly (P<0.05) higher than other plots. Grass crop cultivation together with legumes by applying livestock manure to soil may lead to higher palatability of livestock, and better quality of forage. Furthermore, cattle manure application increased production yield per ha and CP contents. Thus, when applying forage crops produced by cattle manure application and mixed sowing to organic livestock production, it was conceived that forages produced might become a substitute for foreign organic grain as protein sources.

  • PDF

Studies on the Types and Rates of Application of Cattle Slurry and Swine Manure Fermented with Sawdust on Productivity of Silage Corn and Leaching of Nutrients (우분액비 및 톱밥발효돈분 시용이 사일리지용 옥수수 생산성 및 양분용탈에 미치는 영향)

  • Na, Hoon-Chan;Jung, Min-Woong;Choi, Yeun-Sik;Choi, Ki-Choon;Yook, Wan-Bang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.4
    • /
    • pp.177-186
    • /
    • 2006
  • This study was conducted to investigate the effects of the types and rates of application of animal manure on productivity of silage corn and environmental pollution in silage corn cultivation soil. The experiment was confirmed in lysimeter which was constructed with 0.30m diameter, and 1 m depth. This study was arranged in split plot design. Main plots were the types of cattle slurry (CS), swine manure fermented with sawdust (SMFS) and chemical fertilizer (CF), Subplots were the application rates of animal manure, as urea, such as 100, 200 and 400 kg N $ha^{-1}$. Dry matter(DM) and nitrogen yields of silage corn enhanced as increased application rates of CS, SMFS and CF (p<0.05). DM yield reveals that there is an decrease in order of CF>CS>SMFS (p<0.05). Crude protein (CP) contents of the whole silage corn increased as increased application rates of CS, SMFS and CF. IN addition, $NO_{3^-}N$ content in leaching water by application of animal manure reveals that there is an decrease in order SMFS>CF>CS (p<0.05). However, $NH_{4^-}N$ content was hardly influenced by application of animal manure, and $NH_{4^-}N$ content increased with application rates increased. $PO_{4^-}P$ content in leaching water by application of animal manure reveals that there is an decrease in order of SMFS>CF>CS. $PO_{4^-}P$ increased as increasing application rates (p<0.05), whereas $PO_{4^-}P$ in leaching water maintained a low levels.