• Title/Summary/Keyword: SOIL HEALTH

Search Result 969, Processing Time 0.03 seconds

The Environmental Hazard Assessment of Siting Restricted Industries from Industrial Complex in Rural Area Applied by Chemical Ranking and Scoring System (화학적 등급화기법을 적용한 농공단지 입주제한업종의 환경유해성 평가)

  • Hong, Sang-Pyo
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.6
    • /
    • pp.549-560
    • /
    • 2015
  • The priorities of siting restriction was derived from quantification of environmental hazard according to industrial classification based on 'Chemical Ranking and Scoring System(CRS)' which is handling the discharge characteristics of 31 industrial classifications regulated from locating at 'Industrial Complex in Rural Area(ICRA)'. CRS that is utilizing the data of 'Pollutant Release and Transfer Registers(PRTR)' is applied to determine human health risk and ecological risk which are calculated by discharged amount and materials $LC_{50}$ according to water, soil and air media based on industrial classification. From this process, exposure assessment and toxicity assessment for integrating the adverse environmental impact and the mitigation effect of environmental risk according to the development of environmental technologies into establishing the rational landuse management method for the 31 industrial classifications regulated from locating at ICRA was analyzed. From the assessment result of the siting restriction removal at ICRA for 31 industrial classifications, based on 2012 year reference 6 industries that includes Manufacture of Guilt Coloration Surface Processing Steel Materials, Manufacture of Biological Product, Manufacture of Smelting Refining and Alloys of Copper, Dyeing and Finishing of Fibers and Yarns, Manufacture of Other Basic Iron and Steel n.e.c., Rolling Drawing and Extruding of Non-ferrous Metals n.e.c. are calculated as having relatively lower environmental hazards, thus it is judged that the siting restriction mitigation at ICRA is possible for the 6 industrial classifications that are not discharging the specific hazardous water contaminants during manufacturing process.

Effects of Bedding Material Composition in Deep Litter Systems on Bedding Characteristics and Growth Performance of Limousin Calves

  • Meng, J.;Shi, F.H.;Meng, Qingxiang;Ren, L.P.;Zhou, Z.M.;Wu, H.;Zhao, L.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.1
    • /
    • pp.143-150
    • /
    • 2015
  • The objective of this study was to evaluate the effects of different litter mixture compositions on bedding system temperature, pH and volatile fatty acid and ammonia-N ($NH_3$-N) content, and the serum physico-chemical parameters and growth indices of calves. Thirty-two Limousin calves ($280{\pm}20kg$) were randomly assigned to four groups (n = 8 for each group) according to the bedding system used: i) control with soil only (CTR); ii) mixture with 50% paddy hulls (PH), 30% saw dusts (SD), 10% peat moss (PM) and 10% corn cobs (CC) (TRT1); iii) mixture with 15% PH, 15% SD, 10% PM, 40% CC, and 20% corn stover (CS) (TRT2); iv) mixture with 30% PH, 10% PM, 40% CC, and 20% CS (TRT3). The litter material combinations of different treatments were based on the cost of bedding system materials in China. The cost of four treatments from low to high: Control$NH_3$-N level (271.83 to 894.72 mg/kg) was lowest for TRT1 (p<0.0001) and highest for TRT2 (p<0.0001). The acetate, propionate and butyrate levels were highest for the control group (p<0.0001). In all the groups, the pH value (6.90 to 9.09) increased at the beginning and later remained stable at below 9.09. The temperature of deep litter increased at the first week and reached the maximum ($42.1^{\circ}C$) on day 38. 3,5,3'-Triiodothyronine ($T_3$) levels in the TRT1 group animals (p<0.0001) were lower than those in the control and TRT2 animals. 3,5,3',5'-Tetraiodothyronine ($T_4$) in the TRT1 group (p = 0.006) was lower than that in the other treatment groups. Cortisol (COR) in the control and TRT1 group was lower (p<0.0001) than that in the TRT2 and TRT3 groups. Corticosterone (CORt) in the control group was higher (p<0.0001) than that in the treatment groups. The findings indicate that the deep litter bedding systems provided better conditions for animal health and growth performance compared with the control system. Furthermore, the litter composition of TRT1 was found to be optimal among the three treatment groups.

Antifungal Activity of Bacillus sp. GJ-1 Against Phytophthora capsici (Bacillus sp. GJ-1의 Phytophthora capsici에 대한 항진균활성)

  • Lee, Gun-Joo;Han, Joon-Hee;Shin, Jong-Hwan;Kim, Heung Tae;Kim, Kyoung Su
    • The Korean Journal of Mycology
    • /
    • v.41 no.2
    • /
    • pp.112-117
    • /
    • 2013
  • Phytophthora capsici is one of major limiting factors in production of pepper and other important crops worldwide by causing foliage blight and rot on fruit and root. Increased demand for the replacement of fungicides has led to searching a promising strategy to control the fungal diseases. To meet eco-friendly agriculture practice, we isolated microorganisms and assessed their beneficial effects on plant health and disease control efficacy. A total of 360 bacterial strains were isolated from rhizosphere soil of healthy pepper plants, and categorized to 5 representative isolates based on colony morphology. Among the 5 bacterial strains (GJ-1, GJ-4, GJ-5, GJ-11, GJ-12), three bacterial strains (GJ-1, GJ-11, GJ-12) presented antifungal activity against P. capsici in an fungal inhibition assay. In phosphate solubilization and siderophore production, the strain GJ-1 was more effective than others. The strain GJ-1 was identified as Bacillus sp. using 16S rDNA analysis. Bacillus sp. GJ-1 was also found to be effective in inhibiting other plant pathogenic fungi, including Rhizoctonia solani, Pythium ultimum and Fusarium solani. Therefore, the Bacillus sp. GJ-1 can serve as a biological control agent against fungal plant pathogens.

Chemical Compositions Trends of Airbone PArticles at Kunsan (군산지역 부유분진의 계절적 농도변화와 화학적 조성에 대한 연구)

  • 오진만;김득수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.6
    • /
    • pp.475-485
    • /
    • 2001
  • The presence of airborne particles in the earth atmosphere expert important controls on the global climate because of their effects on the radiative balance. However, there are major uncertainties associated with the direct and indirect radiative effects of aerosols. In addition, their physicochemical properties cannot only the decline of air quality but also damage human health. Airborne particles were collected by two different commercial air samples, high volume sampler(for TSP) and low volume sampler(for P $M_{10}$ ) at the campus of Kunsan National University during February to September, 2000. In most cases, TSP and P $M_{10}$ were sampled once a week for the duration of 24 hours from 9:00 a.m. In addition samples were collected more intenisve, when the yellow dust was expected. Each sample was analyzed for pH and major ions concentration (C $l^{[-10]}$ , S $O_4$$^{2-}$, N $O_3$$^{[-10]}$ , N $a^{+}$, N $H_4$$^{+}$, $K^{+}$, $Mg^{2+}$, $Ca^{2+}$) by ion chromatography and atomic absorption spectrophotometry. Acidity (pH) of TSP and P $M_{10}$ ranged from 5.09 to 8.51 and from 6.22 to 7.54, respectively. The concentrations of airborne particles were found to satisfy both the short and long-term air quality standards during the sampling period. If the ratio of ionic concentrations originating from None sea salt(Nss) to sea salt(ss) in aerosol samples was concerned, it was found that the ionic concentrations from marine environment contributed dominantly in total mass concentration in the airborne particles. When seasonal trends were examined, the TSP concentrations in spring were higher than those of other seasons. It may result form frequent occurrences of yellow dust and during the spring season. The concentration ratio of P $M_{10}$ to TSP ranged from 0.78 to 1 during the sampling period. pH in the airborne particle was highest during spring, but the other seasons maintained almost same level. These results suggest that alkaline species in yellow dust can directly neutralize aerosol acidity. During spring season, yellow dust could be a positive factor that can defer the acidification of surface soil and water by neutralizing acidic aerosols in the atmosphere.osphere.

  • PDF

A Research on Diagnosis of Institutional Problem and Improvement Plan for Management in Coastal Dredged Sediment - Case Study of Masan Bay - (연안준설토 관리의 제도적 문제점 진단 및 개선방안 연구 - 마산만 사례를 중심으로 -)

  • Yi, Yongmin;Oh, Hyuntaik;Lee, Dae In;Kim, Gui Young;Jeon, Kyeong Am;Kim, Hye Jin
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.5
    • /
    • pp.444-455
    • /
    • 2015
  • In relation to the utilization and disposal of dredged sediment caused by coastal dredging project, we diagnosed the status of legal standard and system, and proposed the improvement plan. Dredging costal sediment distinguished the usage and the disposal by the Standard for the Beneficial Usage of Dredged Sediment. The site where disposal has been completed could be used as a site for developmental project. In case of the usage of dredged sediment for reclamation, we found that the adaptation of the Standard for Beneficial Usage of Dredged Sediment is appropriate for reclamation considering the characteristic of soil, the differences of variables, and the distinction of standard analysis methods. The current the Standard for Beneficial Usage of Dredged Sediment requires the improvement with the usage of dredging coastal sediment in the following. First, the Standard needs to include the standard of the discrimination for reclamation. Second, the current Standard is necessary to be divided by two levels, it needs to be mitigated considering human health risk. Third, it is necessary to consider both the marine environmental impact assessment and mitigation plan near coastal dredging area.

Analysis of Biodiversity and Ecological Characteristics on Tamjin-river Estuarine Ecosytem (탐진강 하구역의 생물다양성과 생태적 특성 분석 연구)

  • Lim, Jeongcheol;Kim, Taesung
    • Journal of Wetlands Research
    • /
    • v.20 no.2
    • /
    • pp.181-189
    • /
    • 2018
  • This study was performed to analyze the dynamics and distributional condition of biological community and to support the basic information about the estuarine ecosystem management by using the intensively surveyed results by each taxon experts around Tamjin river. We analyzed the biological diversity, abundance, correlation among species, and ecological characteristics about 11 taxa groups including vegetation, fish, birds, mammals, etc. in the Tamjin river estuarine ecosystem. We classified vegetation types into 7 physiognomic types and 18 communities according to habitat conditions with the physical environments and salinity. In total, 1125 species including 9 species of endangered species were identified in research area. The species composition and distributional characteristics of each taxon were corresponded to the environmental characteristics of the estuarine ecosystem. Especially, the species diversity and distribution were clearly distinguished in the river according to the difference of the environmental factors such as flow rate, salinity, and soil. Despite the disturbance factors such as barrage and levees, the biodiversity and its distribution were evaluated to be high level under the current environmental conditions. However, loss or reduction of wildlife habitat due to reclamation, embankment, barrage installation and expansion of farmland has been identified as a major threat to the diversity and health of the local ecosystem. The results of this study can be used as a basic data to cope with various development pressure and damage crisis of the whole estuaries including Tamjin river.

Studies on the Production of Cellulase by Trichoderma sp. SO-571 and the Enzyme Treatment for Cellulosic Fabrics. (Trichoderma sp. SO-571에 의한 Cellulase 생산 및 섬유가공 처리에 관한 연구)

  • Oh, Sung-Hoon;Kim, Moo-Sung;So, Sung;Seo, Hyung-Ju
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.1
    • /
    • pp.42-45
    • /
    • 2003
  • A Trichoderma sp. SO-571 producing cellulase was isolated from soil, and a pilot-scale cultivation and separation of cellulase were conducted. The cellulase activity was about 14.5 unit/ml after 112 hr of cultivation in a 301 fermenter containing 3.0% cellulose, 4.0% soybean powder, 3.0% wheat bran, 0.5% ($NH_4$)$_2$$SO_4$0.2% urea, 1.0% CSL, 0.5% $KH_2$PO$_4$, and 0.2% Tween 80. The cellulase was purified over 4.6 folds in three steps with 47.86% yield. The optimum pH of cellulase was pH 5.0 and optimum temperature was $60^{\circ}C$. To investigate the effect of the cellulase-treated cellulosic fabric, the weight loss was compared. The weight loss of denim treated with cellulase from Trichoderma sp.SO-571 was 2.9% and that with Celluclast 1.5L was 2.2%. In tencel treatement with enzyme, cellulase showed 0.7% higer weight loss than that with Celluclast 1.5L.

Biosensor System for the Detection of Agrichemicals and Its Applications (농약 검출을 위한 바이오센서 시스템 연구 및 그 응용)

  • Park, Tae-Jung;Yang, Min-Ho;Lee, Sang-Yup;Kim, Soo-Hyun
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.227-238
    • /
    • 2009
  • In the recent years, some organic toxic chemicals were used for obtaining high-yield productivity in agriculture. The undegraded pesticides may remain in the agricultural foods through atmosphere, water, and soil and cause public health problems to environmental resources and human beings even at very low concentrations. Small amounts of pesticides can affect a central nervous system, resulting in immunogenic diseases, infertility problems, respiratory diseases and born marrow diseases, which can lead even to death. Monitoring of the environmental pesticide is one of the important issues for the human well-being. Several kinds of biosensors have been successfully applied to the detection of agrichemical toxicity. Also, few platforms for biocide detection have been definitely developed for the degradation and reaction of pesticides. Biochip and electrochemistry experiments involve immobilizing a receptor molecule on a solid substrate surface, and monitoring its interaction with an analyze in a sample solution. Furthermore, nanotechnology can be applied to make high-throughput analyses that are smaller, faster and sensitive than conventional assays. Some nanomaterials or nanofabricated surfaces can be coupled to biomolecules and used in antibody-based assays and enzymatic methods for pesticide residues. The operation procedure has become more convenient as it does not require labeling procedure. In this paper, we review the recent advances in agrichemical defection research and also describe the label-free biosensor for pesticides using various useful detection methods.

Rare Earth Element Contents of the Ginsengs and their Soils, Keumsan area (금산 인삼과 토양의 희토류 원소 함량관계)

  • Song, Suck-Hwan;Min, Ell-Sik;Yoo, Sun-Kyun;Lee, Yong-Gyoo
    • Journal of Ginseng Research
    • /
    • v.30 no.1
    • /
    • pp.31-40
    • /
    • 2006
  • Ginsengs(1-3 years old) from the Keumsan were analysed for the rare earth element(REE) contents and compared with their soils from the biotite granite(CR), phyllite(PH) and shale(SL) areas. In the soils, high REE contents and correlations were found in the SL. In the ginsengs, high element contents were shown in the SL. High correlations were found in the 3 year. In the upper parts, the 2 year of the GR was mainly high. Comparing with the same aged ginsengs, high elements were shown in the SL. Positive correlations were dominated and high correlations were shown in the 3 year ginsengs. In the root parts, the GR was high in the 2 year while the PH and SL were high in the 3 year. Comparing with the same ages, high elements were shown in the SL. High correlation relationships were found. Comparing between upper and root parts, the upper parts were mainly high, LREE showed big differences and relative ratios of the 2 year were mainly high. Comparing between soils and ginsengs, the soils were mainly high. Ratios between soils and root parts(soils/root parts) were higher than those of the upper parts. Ratios of the LREE showed big differences relative to those in the HREE and the ratios increased with ages. Overall results suggested that ginsengs of the SL were similar to those of soils and those of the PH showed big differences.

Chemosensitization of Fusarium graminearum to Chemical Fungicides Using Cyclic Lipopeptides Produced by Bacillus amyloliquefaciens Strain JCK-12

  • Kim, K.;Lee, Y.;Ha, A.;Kim, Ji-In;Park, A.R.;Yu, N.H.;Son, H.;Choi, G.J.;Park, H.W.;Lee, C.W.;Lee, T.;Lee, Y.W.;Kim, J.C.
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.44-44
    • /
    • 2018
  • Fusarium head blight (FHB) caused by infection with Fusarium graminearum leads to enormous losses to crop growers, and may contaminate grains with a number of Fusarium mycotoxins that pose serious risks to human and animal health. Antagonistic bacteria that are used to prevent FHB offer attractive alternatives or supplements to synthetic fungicides for controlling FHB without the negative effects of chemical management. Out of 500 bacterial strains isolated from soil, Bacillus amyloliquefaciens JCK-12 showed strong antifungal activity and was considered a potential source for control strategies to reduce FHB. B. amyloliquefaciens JCK-12 produces several cyclic lipopeptides (CLPs) including iturin A, fengycin, and surfactin. Iturin A inhibits spore germination of F. graminearum. Fengycin or surfactin alone did not display any inhibitory activity against spore germination at concentrations less than 30 ug/ml, but a mixture of iturin A, fengycin, and surfactin showed a remarkable synergistic inhibitory effect on F. graminearum spore germination. The fermentation broth and formulation of B. amyloliquefaciens JCK-12 strain reduced the disease incidence of FHB in wheat. Furthermore, co-application of B. amyloliquefaciens JCK-12 and chemical fungicides resulted in synergistic in vitro antifungal effects and significant disease control efficacy against FHB under greenhouse and field conditions, suggesting that B. amyloliquefaciens JCK-12 has a strong chemosensitizing effect. The synergistic antifungal effect of B. amyloliquefaciens JCK-12 and chemical fungicides in combination may result from the cell wall damage and altered cell membrane permeability in the phytopathogenic fungi caused by the CLP mixtures and subsequent increased sensitivity of F. graminearum to fungicides. In addition, B. amyloliquefaciens JCK-12 showed the potential to reduce trichothecenes mycotoxin production. The results of this study indicate that B. amyloliquefaciens JCK-12 could be used as an available biocontrol agent or as a chemosensitizer to chemical fungicides for controlling FHB disease and as a strategy for preventing the contamination of harvested crops with mycotoxins.

  • PDF