• Title/Summary/Keyword: SOIL COMPACTION

Search Result 638, Processing Time 0.03 seconds

A Estimation Method of Settlement for Granular Compaction Pile (조립토 다짐말뚝의 침하량 산정기법)

  • Kim, Hong-Taek;Hwang, Jung-Soon;Park, Jun-Yong;Yoon, Chang-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.286-293
    • /
    • 2005
  • In soft ground the settlement criterion usually governs. Therefore, it is very important not only reasonable assessment of the allowable bearing capacity of the soil but also reasonable assessment of settlement. In the previous studies by many other researchers, load concentration ratio and settlement reduction factor are usually proposed for estimating the settlement of granular compaction piles. In the previous studies, the reinforced ground with granular compaction piles is simplified as composite ground and the analysis is performed with in the basis of this assumption. However, the lateral deformation of granular compaction pile could not be considered and only the relative vertical strength between pile and soils could be considered in the analysis. In this study, a method adapting the Tresca failure criterion is proposed for calculating settlement of granular compaction pile. Proposed method can be considered the strength of pile material, pile diameter, installing distance of pile and the deformation behavior of vertical and horizontal directions of pile. In the presented study, large-scale field load test is performed and the results are described. Also, predictions of settlements from the proposed method are compared with the results of the load test. In addition, a series of parametric study is performed and the design parameters are analyzed.

  • PDF

Compressive strength characteristics of cement treated sand prepared by static compaction method

  • Yilmaz, Yuksel;Cetin, Bora;Kahnemouei, Vahid Barzegari
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.935-948
    • /
    • 2017
  • An experimental program was conducted to investigate the effects of the static compaction pressure, cement content, water/cement ratio, and curing time on unconfined compressive strength (UCS) of the cement treated sand. UCS were conducted on samples prepared with 4 different cement/sand ratios and were compacted under the lowest and highest static pressures (8 MPa and 40 MPa). Each sample was cured for 7 and 28 days to observe the impact of curing time on UCS of cement treated samples. Results of the study showed the unconfined compressive strength of sand increased as the cement content (5% to 10%) of the cement-sand mixture and compaction pressure (8 MPa to 40 MPa) increased. UCS of sand soil increased 30% to 800% when cement content was increased from 2.5% to 10%. Impact of compaction pressure on UCS decreased with a reduction in cement contents. On the other hand, it was observed that as the water content the cement-sand mixture increased, the unconfined compressive strength showed tendency to decrease regardless of compaction pressure and cement content. When the curing time was extended from 7 days to 28 days, the unconfined compressive strengths of almost all the samples increased approximately by 2 or 3 times.

Turfgrass Establishment of USGA Putting Greens Related with Soil Physical Properties (USGA 공법으로 조성된 그린의 토앙물리성과 Bentgrass의 생육)

  • Kweon Dong-Young;Lee Jeong-Ho;Lee Dong-lk;Joo Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.19 no.2
    • /
    • pp.95-102
    • /
    • 2005
  • USGA green specification is currently accepted in construction method of Korea. This study was carried out to find the factors influencing growth of turfgrass associated with soil physical properties of soil root-zone on golf green constructed with USGA method. Three putting greens in poor turfgrass and one in good turfgrass condition were selected for investigation on one golf course site at mid-South Korean peninsula. Soil hardness, moisture content, root length, and turf density were measured on-site greens, and soil physical properties and soil chemical properties also analyzed in laboratory. As a result of on-site surveys and soil physical tests in laboratory, soil physical properties were most important factors which influenced on turfgrass growth at tested greens. The results of soil particle analysis on green No. 2, in good turf condition, matched USGA sand particle recommendations. But those greens such as Nos. 1, 11 and 16, in poor putting greens, showed high soil compaction and improper soil particle distribution. Those factors created low leaf density, poor root depth, and higher moisture content compared with lower part of topsoil. Such phenomena caused inadequate turfgrass growth with soil hardening associated with poor drainage. Therefore, declines of soil physical properties associated with improper particle distribution caused a major factor influencing on turfgrass growth in golf green. Adequate test of soil particle analysis by USGA specification and proper construction method followed by adequate turf maintenance should be performed to obtain optimal turf quality on putting green.

Study of the Anisotropy of the Roller Compacted Concrete (RCC) for Pavement

  • Zdiri, Mustapha;Abriak, Nor-edine;Ouezdou, Mongi Ben;Neji, Jamel
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.45-49
    • /
    • 2010
  • The roller compacted concrete (RCC) is supposed to be isotropic, whereas the compaction of this material, which is achieved using the same machines used for the soil, appears only unidirectional, making the RCC an anisotropic material. In this experimental work, the influence of the phenomenon of compaction on the isotropy of the RCC is studied. This study was carried out through an evaluation of the compressive strengths and ultrasonic tests which were used for measurements of the elastic modulus and the dynamic Poisson's ratio of the RCC as well as a qualitative judgement of the RCC aspect at the hardened state. The results of this work proved the anisotropy of the RCC and they showed the sensitivity of the mechanical strengths and the elastic modulus to the compaction direction.

A Field Test Study on stress concentration ratio of Crushed-Stone Column Pile (쇄석다짐말뚝의 응력분담비에 관한 현장실험 연구)

  • Lee, Min-Hee;Im, Jong-Chul;Hwang, Geun-Bae;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.525-532
    • /
    • 2004
  • Among soft ground treatment methods with granular soil used in domestic, the sand compaction pile method has been utilized greatly, but, as a result of exhaustion of sand and increase of unit cost, a necessity of an alternative method is suggested. In this study, the static load tests for crushed-stone compaction piles which were constructed on test field were performed. Based on test results, stress concentration ratios between the crushed-stone compaction pile and the soft ground were investigated and estimated. The stress concentration ratio was the range of 1.7 to 3.0 and the higher it was the more replacement rate was increased.

  • PDF

Characteristics of Ground Improvement by Compaction Grouting System in Filled Ground (매립토층에서 CGS에 의한 지반개량특성에 관한 연구)

  • 천병식;여유현;정영교;정완균;정의원;김우종
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.425-432
    • /
    • 2001
  • Compaction Grouting System, the method which makes ground compact by injection of low slump mortar, Is widely used for reinforcement of soft ground, restoration of structures happened differential settlement, underpinning and restoration of damaged dam core. The quantitive analysis of ground improvement for this method has not performed yet. So, design parameters about thls method must be studied through performance of CGS in various types of soil to make CGS adaptable widely. In this study PBT, SPT and field density test were performed for analysis of the characteristics of ground improvement and pressuremeter and inclinometer were installed for analysis of the characteristics of compaction in adjacent ground. In this paper, denoted much effects for filled ground that increasing of the bearing capacity, confirming the displacement of adjacent ground and the effective radius of injection.

  • PDF

Effect of the Oversowing and Other Seeding Methods on Growth , Yield and Crude Protein Yield of Alfalfa ( Medicago sativa L. ) (겉뿌림 및 다른 파종방법들이 Alfalfa의 생육과 수량 및 조단백질생산량에 미치는 영향)

  • Lee, Joung-Kyong;Seo, Sung;Kim, Ha-Jong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.11 no.2
    • /
    • pp.84-89
    • /
    • 1991
  • This experiment was carried out to determine the effects of oversowing and other seeding methods (oversowing+ raking, oversowing+ raking+compaction, tillage+ broadcasting+ compaction and tillage + drilling+ compaction) on growth, dry matter and crude protein yield of alfalfa (Medicago satiua L.). The results obtained are summarized as follows:1. Soil pH and soil properties were improved by tillage.2. Establishment of alfalfa was increased with raking and compaction, and more by tillage than by oversowing(P

  • PDF

Study on the soil related assessment factors in Korean Environmental Impact Assessment (환경영향평가 시 토양 관련 평가 항목에 대한 고찰)

  • Yang, Jihoon;Park, Sun Hwan;Kim, Tae Heum;Hwang, Sang Il
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.1
    • /
    • pp.41-50
    • /
    • 2016
  • Environmental impact assessment has been implemented for more than 30 years in Korea. During that period, various amendments were carried out about target plan and assessment factors. However, in current environmental impact assessment act, only a few factors has been considered for soil environment assessment. This study analyzes the national and foreign environmental impact assessment guidelines on soil related factors and figures out the problems and implications of Korean environmental impact assessment. In Korea, water quality, topography and geology, hydraulics and hydrology, and soil contamination were analyzed as a soil related factors. The main assessment targets were pollution related factors such as soil pollution levels, amount of rainfall runoff, and non-point sources. However, in the case of foreign guidelines, soil compaction, soil sealing, and soil salinization is being analyzed for evaluating function and quality of soil environment. The revision of soil-related factors are needed for sustainable development of Korea.

Experimental Study on the Permeability of Decomposed Granite Soil (마사토의 차수성에 관한 실험적 연구)

  • 이형수
    • Water for future
    • /
    • v.7 no.2
    • /
    • pp.83-91
    • /
    • 1974
  • On the constructions of fill type dams, usually the constructions materials is desired to be obtained in vicinity ofthe dam sitc to justify economical feasilblity of the project. In the stability analysis of the dams, core parts takesa small fraction of the slip circle and main function of core is to decrease dam permeability. This paper shows results of various tests as physical properties, compactions (using single, double triple and four times of the tandard compaction energy) and the permeability tests. Single decomposed granite and mixed materials with clay soils were used in this test. And conclusions of these tests are as follows; 1. Criteira of weathering ratio should be caleulated by density measarment. 2. Permeability coefficient maiuly depends on th #200 sieve passing, and also passing soil quantities depends on the weathering condition of the soil. 3. It was established that low weathered decomposed granite can not be used for the core materials of the fill type dams. On the other hand, moderately weathered decomposed granite soil with particles could pass through #200 sieve in a quantity over 10%, could chieve permeability in a magnitude of $1{\times}10^{-5} cm/see$. 4. With the decomposed granite soil it is possible to perform three times larger compaction energy than the standard energy without any problems.

  • PDF

Waterproof Characteristic for Environmental Water Flows in Small Streams (소규모 하천 친환경 물흐름을 위한 차수특성)

  • Park, Min-Cheol;Kim, Seong-Goo;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.192-199
    • /
    • 2010
  • This research produced internal model tester ($2.0m{\times}2.0m{\times}1.0m$) to evaluate the field application of Paju Unjeong District water recycling system for small streams eco-friendly river bed disparity method for the first time in Korea and conducted comparative analysis of the Paju Unjeong District water recycling system field test results and infiltration rate result of internal tests by each rainfall intensity following surface material. Infiltration rate result of internal tests concrete pavement by rainfall intensity following surface material, asphalt pavement, bentonite mate, stabilized soil construction and mixed soil construction manifested low infiltration rate. On the contrary, compaction soil, grassland and water permeable packaging materials resulted in significant amount of infiltration rate. As for the field permeability test results, they were manifested similar tendency as indoor permeability test results and they satisfied the standard for standard of water permeability of domestic disparity facility (less than $1.0{\times}10-7cm$/sec). As compaction rate increased, unconfined compression strength increased as well while coefficient of water permeability decreased.

  • PDF