• Title/Summary/Keyword: SOIL COMPACTION

Search Result 642, Processing Time 0.019 seconds

Compaction and strength behavior of lime-coir fiber treated Black Cotton soil

  • Ramesh, H.N.;Manoj Krishna, K.V.;Mamatha, H.V.
    • Geomechanics and Engineering
    • /
    • v.2 no.1
    • /
    • pp.19-28
    • /
    • 2010
  • This paper describes the compaction and strength behavior of black cotton soil (BC soil) reinforced with coir fibers. Coir used in this study is processed fiber from the husk of coconuts. BC soil reinforced with coir fiber shows only marginal increase in the strength of soil, inhibiting its use for ground improvement. In order to further increase the strength of the soil-coir fiber combination, optimum percentage of 4% of lime is added. The effect of aspect ratio, percentage fiber on the behavior of the composite soil specimen with curing is isolated and studied. It is found that strength properties of optimum combination of BC soil-lime specimens reinforced with coir fibers is appreciably better than untreated BC soil or BC soil alone with coir fiber. Lime treatment in BC soil improves strength but it imparts brittleness in soil specimen. BC soil treated with 4% lime and reinforced with coir fiber shows ductility behavior before and after failure. An optimum fiber content of 1% (by weight) with aspect ratio of 20 for fiber was recommended for strengthening BC soil.

A Estimation Method of Settlement and The Behaviour Characteristics of Granular Compaction Pile Reinforced with Uniformly Graded Permissible Concrete (등입도 투수성 콘크리트 보강 조립토 다짐말뚝의 거동특성 및 침하량 평가기법)

  • Kim, Jeong-Ho;Hwang, Jung-Soon;Kim, Seung-Wook;Kim, Jong-Min;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.362-371
    • /
    • 2006
  • The behaviour characteristics of Granular Compaction Pile(GCP) are mainly governed by the lateral confining pressure mobilized in the matrix soft soil to restrain the bulging failure of the granular compaction pile. The GCP method is most effective in soft soil with untrained shear strength ranging from $15\sim50\;kPa$. However, the efficiency of this method is falling down in the more compressible soil conditions, which does not provide sufficient lateral confinement. In the present study, the GCP method reinforced with uniformly graded permissible concrete is suggested for the extension of application to the soft ground. Also, large triaxial compression tests are conducted on composite- reinforced soil samples for verification of availability of the suggested method and the settlement estimation method of the reinforced GCP is proposed. Further, for the verification of a validity of the proposed method, predicted settlements are compared with results of numerical analyses. Tn addition, parametric studies are performed together with detailed analyses of relevant design parameters.

  • PDF

Shear Strength Characteristics of Short-fiber Reinforced Soil for the Application of Retaining Wall Backfill (옹벽 배면토체 적용을 위한 단섬유 보강토의 전단강도 특성)

  • Park, Young-Kon;Cha, Kyung-Seob;Chang, Pyoung-Wuck
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.73-78
    • /
    • 2003
  • As a fundamental study to develop the retaining wall of new type, short-fibers are mixed with soils and a series of compaction tests and triaxial compression tests for short-fiber reinforced soils are performed. From the results of compaction tests, optimum moisture content is increased and maximum dry unit weight is decreased with fiber mixing ratio. When 60mm fibrillated fiber of 0.2$\%$ mixing ratio is added to SM soil, strength increment of short-fiber reinforced soil is above 1.2 times compared to soil only. Strength increment shows maximum value for composite reinforced soil, namely, soil+short-fiber+planar reinforcement. But in case of mixing with ML soil and short-fiber, the strength of short-fiber reinforced soil is nearly the same as soil only. Internal angle of short-fiber reinforced soil is increased about $2\~3$ degrees and cohesion is also increased above 10kPa compared to soil only. Therefore, it is judged that short-fiber is a good material to strengthen the soil.

  • PDF

Experimental Evaluation of Shear Strength of Surface Soil Beneath Greenhouse Varying Compaction Rate (비닐하우스 기초 토양의 다짐률 변화에 따른 전단강도 특성)

  • Lim, Seongyoonc;Heo, Giseok;Kwak, Dongyoup
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.17-26
    • /
    • 2021
  • Greenhouses have been damaged due to the uplift pressure from strong wind, for which rebar piles are often installed near the greenhouse to resist the pressure. For the effective design of rebar piles, it is necessary to access the shear strength of soil on which the greenhouse is constructed. This study experimentally evaluates the shear strength of the soil beneath the greenhouse. Four soil samples were collected from four agricultural sites, and prepared for testing with 75, 80, 85, and 90% compaction rates. One-dimensional unconfined compression test (UC), consolidated-undrained triaxial test (CU), and resonant column test (RC) were performed for the evaluation of shear strength and shear modulus. Generally, the higher shear strength and modulus were observed with the higher compaction rates. In particular, the UC shear strength increases with the increase of #200 sieve passing rate. Resulting from the CU test, the sample with the most of coarse soil had the highest friction angle, but the variation is small among samples. Resulting from the CU and RC tests, the ratio of maximum shear modulus with the major principle stress at failure was the higher at the finer soil. The ratio was two to three times greater than the ratio from the standard sand. This indicates that the shear strength is lower for the fine soil than the coarse soil at the same shear modulus. The results of this study will be a useful resource for the estimation of the pull-out strength of the rebar pile against the uplift pressure.

A Study on the Confined Effects of Highly Moistured Soils Reinforced with Geosynthetics (토목섬유가 보강된 고함수비 흙의 구속효과에 관한 연구)

  • Yoo, Jae-Won;Im, Jong-Chul;Kang, Sang-Kyun;Lee, Hyung-Jun;Choi, Moon-Bong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.25-37
    • /
    • 2019
  • This study confirms reinforcing effect of geosynthetics in the use of soil at higher water contents as a compaction material on compaction tests, field compaction tests, and numerical analysis. To verify a confined effect, a large mold(area ratio of rammer / mold = 0.19) larger than D compaction mold(area ratio of rammer / mold = 0.33) was performed for compaction. It showed that in the D compaction test, dry density were 0.5~0.6% increases and in the compaction test using the large mold, it were 2.4~3.7% increases at high water contents. It shows that when the area of compacted area is large enough, a confined effect could be arising from the reinforcement of geosynthetics even at high water contents. As a result of analyzing of compaction effects according to 'depth(z/B) from compacted surface' in the field, when not reinforced, the compaction state deteriorated due to the over-compaction and the compaction did not work well. However, when reinforcement of geosynthetics, restraint effect by geosynthetics occurs, it is confirmed that the compaction energy is effectively transferred to the compaction layer and the dry density is increased. Also, through the conceptual model of the behavior of geosynthetic and soil layer, the mechanism in the ground due to reinforcement of geosynthetics is presented and it is verified through finite element analysis.

The Verification Of Green Soil Material Characteristics For Slope Protection (사면 보호를 위한 녹생토 재료 특성 검증)

  • Lee, Byung-Jae;Heo, Hyung-Seok;Noh, Jae-Ho;Jang, Young-Il
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.681-692
    • /
    • 2017
  • In recent years, large-scale construction projects such as road pavement construction and new city construction have been carried out nationwide with by the expansion of social overhead facilities and base on the economic development planning, resulting in a rapid increase in artificial slope damage. The existing vegetation-based re-installation method of the slope surface greening method reveals various problems such as lack of bonding force, drying, and lack of organic matter. In this study, research was carried out using vegetation-based material and environmentally friendly soil additives, were are used in combination with natural humus, Bark compost, coco peat, and vermiculite. Uniaxial compressive strength was measured according to the mixing ratio of soil additives and the strength was analyzed. Experiments were carried out on the characteristics of the soil material to gauge the slope protection properties by using the soil compaction test method wherein the soil and the soil additive materials are mixed in relation to the soil height, the number of compaction, the compaction method (layer) and the curing condition. As a result of the experiment, excellent strength performance was demonstrated in soil additives using gypsum cement, and it satisfied vegetation growth standards by using performance enhancer and pH regulator. It was confirmed that the strength increases with the mixing of soil and soil additive, and the stability of slope protection can be improved.

A Numerical Analysis of Hydraulic Hammer Compaction (유압식 햄머다짐의 수치해석적 연구)

  • 박인준;박양수;김수일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.183-190
    • /
    • 2000
  • Effective range of Hydraulic Hammer Compaction was studied by numerical analysis instead of empirical method. Numerical analyses were carried out with commercial FEM code, ABAQUS, and verified by comparing the numerical results with field tests of Hydraulic Hammer Compaction. Most of material properties were evaluated by data from laboratory and in-situ tests. Vertical effective range was estimated by distribution curve of plastic strain energy dissipated through soil layers under dynamic load and these results were in good agreement with field tests. Based on verification, the effects of governing properties of Hydraulic Hammer Compaction such as number of hit can be determined by numerical analyses. In addition, vertical effective range can also be determined by Menard's empirical equation using the external work at converging time of plastic strain energy in numerical analysis. This implies that the minimum energy of Hydraulic Hammer Compaction for improvement can be determined by Menard's equation.

  • PDF

Experimental Study on the Engineering Characteristics of Weathering Mudstone -In Pohang area- (이암 황화토의 공학적 특성에 관한 실험적 연구 -포항지역의 이암봉화토를 중심으로-)

  • 김영수;박강우
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.5-16
    • /
    • 1994
  • This paper is concerned with the engineering characteristics weathered mudstone soil in Pohang area. The crushability of weathered Boil can be described in terms of the ratio of surface area(Sw'/Sw). In this study, the characteristics of weathered mudstone soil was investigated by performing teat such as compaction. CBR, permeability, and grain size according to compaction energy. The results are found as follows : (1) In generally, the specific gravity of weathered mudstone soil is very small and optimum moisture content (OMC) is large and maximum dry density is small (2) The CBR value increases as the compaction energy increases, but this value decreses from D -2 compaction(26kg.cm/cm3). the swelling ratio increases the npaction energy to 20.6kg.cm/cm" and decreases in all compaction energy from 20.6kg.cm/cm3 (3) As the compaction energy is small, the change of permeability due to water content is large and the difference between minimum coefficient of permeability and coefficient of permeability at OMC is large, but the difference is small as the compaction energy increases (4) The decrease of permeability due to the decrease of void ratio and the increase of ratio of surface area is caused by the crush of particle due to the increase in compaction energy. Especially, the compaction energy is smaller, the change of the ratio of surface area to the coefficient of permeability is larger.rger.

  • PDF

Application of the New Degree of Compaction Evaluation Method (새로운 다짐도 평가기법의 적용성에 관한 연구)

  • Park, Keun-Bo;Kim, Ju-Hyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.2
    • /
    • pp.5-14
    • /
    • 2012
  • CMV(Compaction Meter Value) obtained from compaction results using an accelerometer, which measures the impact on the ground and the resilient force of the ground, is compared with the other degree of compaction through regression analysis. As a result, there is no correlation between results from conventional test methods (e.g., the plate load test and field density test) and the degree of compaction evaluated by either the Geogauge or the dyanamic cone penetrometer. To assess the possibility of replacing the conventional test methods with new test methods using CMV, several degrees of compaction tests were carried out. Those results show that the CMV obtained from compaction results using an accelerometer can be used as a substitute for conventional methods to evaluate the stiffness characteristics of compacted soil.

The Characteristics on Infiltration of Fine-Grained Soil into Various Materials for Ground Drainage (지반 배수재에 따른 세립토의 관입특성)

  • Koh, Yongil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.11
    • /
    • pp.39-43
    • /
    • 2015
  • In this study, the infiltration quantity of fine-grained soil into coarse-grained soil or aggregate for methods to accelerate consolidation drainage is checked by laboratory tests under various conditions and those characteristics on infiltration are examined closely. Irrespectively of pressures to fine-grained soil corresponding to stresses in a soil mass or moisture contents of fine-grained soil, fine-grained soil does not infiltrate into standard sand and marine sand, so it is verified that drain-resistance into sand mass of drainage / pile does not occur entirely and its shear strength would increase highly by water compaction. It is known that the infiltration depth of fine-grained soil into aggregate increases according that those size is larger in case of aggregates and it increases according that the pressure or the moisture contents is higher in case of same size aggregate. It is thought that drain-resistance into aggregate mass of drainage / pile would occurs by infiltrated fine-grained soil in advance though the infiltration depth of fine-grained soi of lower moisture content than liquid limit into 13 mm aggregate is low quietly. So gravel drain method or gravel compaction pile method, etc. using aggregate of gravels or crushed stones, etc. larger than sand particle size should be not applied in very soft fine-grained soil mass of higher natural moisture contents than liquid limit, and it is thought that its applying is not nearly efficient also in soft fine-grained soil mass of lower natural moisture contents than liquid limit.