• Title/Summary/Keyword: SOHOS flash memory

Search Result 2, Processing Time 0.026 seconds

Analysis of Fin-Type SOHOS Flash Memory using Hafnium Oxide as Trapping Layer (Hafnium Oxide를 Trapping Layer로 적용한 Fin-Type SOHOS 플래시 메모리 특성연구)

  • Park, Jeong-Gyu;Oh, Jae-Sub;Yang, Seung-Dong;Jeong, Kwang-Seok;Kim, Yu-Mi;Yun, Ho-Jin;Han, In-Shik;Lee, Hi-Deok;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.449-453
    • /
    • 2010
  • In this paper, the electrical characteristics of Fin-type SONOS(silicon-oxide-nitride-oxide-silicon) flash memory device with different trapping layers are analyzed in depth. Two kinds of trapping layers i.e., silicon nitride($Si_3N_4$) and hafnium oxide($HfO_2$) are applied. Compared to the conventional Fin-type SONOS device using the $Si_3N_4$ trapping layer, the Fin-type SOHOS(silicon-oxide-high-k-oxide-silicon) device using the $HfO_2$ trapping layer shows superior program/erase speed. However, the data retention properties in SOHOS device are worse than the SONOS flash memory device. Degraded data retention in the SOHOS device may be attributed to the tunneling leakage current induced by interface trap states, which are supported by the subthreshold slope and low frequency noise characteristics.

Analysis of SOHOS Flash Memory with 3-level Charge Pumping Method

  • Yang, Seung-Dong;Kim, Seong-Hyeon;Yun, Ho-Jin;Jeong, Kwang-Seok;Kim, Yu-Mi;Kim, Jin-Seop;Ko, Young-Uk;An, Jin-Un;Lee, Hi-Deok;Lee, Ga-Won
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.34-39
    • /
    • 2014
  • This paper discusses the 3-level charge pumping (CP) method in planar-type Silicon-Oxide-High-k-Oxide-Silicon (SOHOS) and Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) devices to find out the reason of the degradation of data retention properties. In the CP technique, pulses are applied to the gate of the MOSFET which alternately fill the traps with electrons and holes, thereby causing a recombination current Icp to flow in the substrate. The 3-level charge pumping method may be used to determine not only interface trap densities but also capture cross sections as a function of trap energy. By applying this method, SOHOS device found to have a higher interface trap density than SONOS device. Therefore, degradation of data retention characteristics is attributed to the many interface trap sites.