• Title/Summary/Keyword: SOC Estimation

Search Result 160, Processing Time 0.021 seconds

Development of Low-Power IoT Sensor and Cloud-Based Data Fusion Displacement Estimation Method for Ambient Bridge Monitoring (상시 교량 모니터링을 위한 저전력 IoT 센서 및 클라우드 기반 데이터 융합 변위 측정 기법 개발)

  • Park, Jun-Young;Shin, Jun-Sik;Won, Jong-Bin;Park, Jong-Woong;Park, Min-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.301-308
    • /
    • 2021
  • It is important to develop a digital SOC (Social Overhead Capital) maintenance system for preemptive maintenance in response to the rapid aging of social infrastructures. Abnormal signals induced from structures can be detected quickly and optimal decisions can be made promptly using IoT sensors deployed on the structures. In this study, a digital SOC monitoring system incorporating a multimetric IoT sensor was developed for long-term monitoring, for use in cloud-computing server for automated and powerful data analysis, and for establishing databases to perform : (1) multimetric sensing, (2) long-term operation, and (3) LTE-based direct communication. The developed sensor had three axes of acceleration, and five axes of strain sensing channels for multimetric sensing, and had an event-driven power management system that activated the sensors only when vibration exceeded a predetermined limit, or the timer was triggered. The power management system could reduce power consumption, and an additional solar panel charging could enable long-term operation. Data from the sensors were transmitted to the server in real-time via low-power LTE-CAT M1 communication, which does not require an additional gateway device. Furthermore, the cloud server was developed to receive multi-variable data from the sensor, and perform a displacement fusion algorithm to obtain reference-free structural displacement for ambient structural assessment. The proposed digital SOC system was experimentally validated on a steel railroad and concrete girder bridge.

Development of Low Cost, High-Performance Miniaturized Lithium-ion Battery Tester Using Raspberry Pi Zero

  • La, Phuong-Ha;Im, Hwi-Yeol;Choi, Sung-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.47-48
    • /
    • 2017
  • This paper presents a low-cost portable lithium battery parameter measuring and estimating the solution. In this method, lithium battery characteristics are monitored during discharging and charging cycles. The battery profile is analyzed, and its key parameters are estimated by GNU Octave running on Raspberry Pi Zero, a mini computer. The proposed method can measure and estimate the battery parameters for SOC and DOD estimation with reasonable accuracy as well as portability features.

  • PDF

A Study on the Battery Management System for the optimum conditions of the battery in UPS (UPS용 배터리 최적화를 위한 배터리관리시스템에 관한 연구)

  • Moon, Jong-Hyun;Seo, Cheol-Sik;Park, Jae-Wook;Kim, Geum-Soo;Kim, Dong-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.321-324
    • /
    • 2008
  • This paper presents the battery management system(BMS) for the optimum conditions of the lead-Acid battery in UPS. The proposed system controls the over and under currents of battery for protecting and it was applied algorithm for optimum conditions to estimate the State Of Charge(SOC) in charge or discharge mode. It approved the performance and the algorithm for the estimation of SOC, through the experiments which using the charge and discharge tester and the field tests.

  • PDF

Study on analysis of SOH estimation tendency according to C-rate of Li-ion battery using DEKF (이중 확장 칼만 필터를 활용한 리튬이온 배터리의 C-rate별 노화에 따른 SOH 추정 경향성 분석 연구)

  • Kim, Gun-Woo;Park, Jin-Hyung;Kim, Min-O;Kim, Jong-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.194-195
    • /
    • 2019
  • 배터리는 사용 기간과 회수가 증가함에 따라 수명이 점차 감소한다. SOH(State-Of-Health)는 배터리의 초기 상태와 현재 상태를 비교하여 배터리의 수명 상태를 나타내는 지표이며, 이는 배터리를 사용함에 있어서배터리의 현재 충전상태를 나타내는 SOC(State-Of-Charge)와 함께 정확한 추정을 필요로 한다. 본 논문에서는 리튬이온 배터리를 C-rate에 따라 노화시키며 각 C-rate별 SOH 추정 경향성을 분석하였다. 배터리의 SOC와 SOH는 확장 칼만 필터를 병렬적으로 사용하는 이중 확장 칼만 필터를 활용하여 추정한다. 배터리의 노화실험은 완전충전과 완전충전을 반복하는 전류 프로파일을 인가하였으며, 실험은 상온(25℃)에서 실행하였다.

  • PDF

Due to the Difference in Uniformity of Electrical Characteristics between Cells in a Battery Pack SOC Estimation Performance Comparative Analysis (배터리팩 내 셀 간 전기적 특성 균일도 차이에 의한 SOC 추정성능 비교분석)

  • Park, Jin-Hyeong;Lee, Pyeong-Yeon;Jang, Sung-Soo;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.16-24
    • /
    • 2019
  • The performance of the battery management system (BMS) algorithm is important for ensuring the stability and efficient operation of battery packs. Such a performance is determined by the internal parameters of the electrical equivalent circuit model (EECM). This study proposes a performance improvement and verification of battery parameters for the BMS algorithm using electrical experiments and tools. The parameters were extracted through electrical characteristic experiments, and an EECM based on Ah counting was designed. Simulation results using the EECM were compared with actual experimental data to determine the best parameter extraction method.

Thermal analysis and estimation of high power 18650 lithium ion battery under varying current condition (고출력 18650 리튬이온 배터리의 가변전류 열해석 및 추정)

  • Kang, Taewoo;Yoo, Kisoo;Lee, Pyeong-Yeon;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.424-425
    • /
    • 2019
  • 본 논문은 1차 RC 등가회로를 이용하여 리튬이온 배터리의 저항성 발열인 비가역 발열의 파라미터를 제시하였다. 발열 추정을 위해 1 C-rate에서 HPPC(Hybrid Pulse Power Characterization) 실험을 통하여 비가역 발열의 파라미터인 SOC 5%별 내부 저항을 추출하였다. 추출된 SOC 5%별 저항을 이용하여 1C-rate에서 3C-rate로 변화하는 조건에서 열 추정 성능을 확인하였다. 높은 C-rate로 방전 전류가 변화하는 상황에서 발열 시뮬레이션과 실험값을 비교하였으며, 1C-rate의 HPPC 실험에서 얻어진 내부 저항이 부하의 변동에 따른 리튬이온 배터리의 발열 추정 파라미터로써 사용될 수 있음을 검증하였다.

  • PDF

SOC estimation of ESS for frequency regulation based on extended kalman filter (확장칼만필터 기반 주파수 조정용 ESS의 SOC 추정 연구)

  • Kwon, Soon-Jong;Choi, Jin Hyeok;Lim, Ji-Hun;Lee, Sung-Eun;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.201-203
    • /
    • 2019
  • ESS의 데이터에 노이즈가 발생하였을 때 배터리의 상태를 정확하게 추정하는 것은 어려운 부분이며, 부정확한 배터리 상태 추정은 시스템의 안전성 및 신뢰성을 하락시킬 수 있다. 실제 사용되는 시스템의 대부분의 데이터에는 노이즈가 발생하며, 이러한 노이즈를 고려하여 배터리의 상태를 정확하게 파악하는 연구는 매우 중요하다. 본 논문에서는 주파수 조정 용도로 ESS가 사용되었을 때 배터리의 운전 패턴을 생성하고, 입력 데이터에 심각한 노이즈가 발생하였을 때 EKF 알고리즘을 사용하여 배터리의 상태를 정확하게 추정하는 것을 보여준다.

  • PDF

Cylinder Pressure based Real-Time IMEP Estimation of Diesel Engines (실린더 압력을 이용한 디젤엔진의 실시간 IMEP 추정)

  • Kim, Do-Hwa;Oh, Byoung-Gul;Ok, Seung-Suk;Lee, Kang-Yoon;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.118-125
    • /
    • 2009
  • Calculation of indicated mean effective pressure(IMEP) requires high cylinder pressure sampling rate and heavy computational load. Because of that, it is difficult to implement in a conventional electronic control unit. In this paper, a cylinder pressure based real-time IMEP estimation method is proposed for controller implementation. Crank angle at 10-bar difference pressure($CA_{DP10}$) and cylinder pressure difference between $60^{\circ}$ ATDC and $60^{\circ}$ BTDC($DP_{deg}$) are used for IMEP estimation. These pressure variables can represent effectively start of combustion(SOC) and fuel injection quantity respectively. The proposed IMEP estimation method is validated by transient engine operation using a common-rail direct injection diesel engine.

Survey on Battery SOC Estimation Methods using Data-driven AI Algorithms (데이터 기반 인공지능 알고리즘을 사용하는 배터리 충전상태 추정 기법 조사 분석)

  • Jeong, Dae-Ung;Bae, Sungwoo
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.363-364
    • /
    • 2020
  • 본 논문은 최근 주목 받고 있는 데이터 기반 인공지능 알고리즘을 사용하는 배터리 충전 상태 추정 기법에 대하여 조사 분석한다. 기존의 배터리 모델링 기법의 단점을 회피할 수 있는 데이터 기반 인공지능 알고리즘의 구조적 특징을 확인하고, 배터리 충전 상태 추정에 데이터 기반 인공지능 알고리즘을 적용 했을 때, 충전 상태 추정 정확도에 영향을 끼치는 요소인 데이터 구성에 대한 분석을 실시하여, 데이터 구성 시 필수적으로 고려해야하는 설계조건을 조사 분석한다.

  • PDF

Absolute Capacity Estimation Method with Temperature Effect for a Small Lithium-polymer Battery (온도의 영향성을 고려한 리튬폴리머 전지의 절대용량 추정 방법)

  • Kim, Hankyong;Kwak, Kiho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.26-34
    • /
    • 2016
  • Military devices and systems powered by batteries need to operate at extreme temperature and estimate the available capacity of the battery at different temperature conditions. However, accurate estimation of battery capacity is challenging due to the temperature-sensitive nature of electrochemical energy storage. In this paper, Peukert's equation with temperature factor is derived, and methods for estimating the absolute capacity of lithium-polymer battery and the state-of-charge(SOC) with respect to varying currents and temperatures are presented. The proposed estimation method is experimentally verified under three different discharge currents(0.5 A, 1 A, 3 A) and six different temperatures ranging from -30 to 45 deg. C. The results show the proposed method reduces the Peukert's estimation error by up to 30 % under or at extreme condition.