• Title/Summary/Keyword: SO2

Search Result 2,434, Processing Time 0.032 seconds

Effect of the Rainfall during Typhoon Periods on the Variation of Concentration of Ambient Air Pollutants (PM10, NO2, CO, SO2) in the Korean Peninsula (태풍 내습 시 강수에 의한 대기오염물질 (PM10, NO2, CO, SO2)의 농도 변화 분석)

  • Ahn, Suk-Hee;Park, So-Yeon;Kim, Jeoung-Yun;Kim, Baek-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.2
    • /
    • pp.128-138
    • /
    • 2014
  • This study has analyzed the concentration variation of four air pollutants ($PM_{10}$, $NO_2$, CO, and $SO_2$) during the typhoon periods over 10 years (2002~2011). In this study, 10 typhoon events which had rainfalls in Korean Peninsula were selected during the study period. The analysis was performed using the observation data of both the air pollutants and rainfall. In order to examine and compare the concentrations of the air pollutants between normal periods and typhoon periods, we have obtained monthly average concentrations from July to September and daily average concentrations during typhoon periods. For the period from July to September, 34% of the total rainfalls can be explained by typhoons, and the concentration of air pollutants during the typhoon period was lower than the normal period. In addition, the concentration variations of the pollutants during the typhoon period were analyzed according to two categories: differences in the concentrations between the day before and the day of the typhoon (Case 1) and between the day before and after the typhoon (Case 2). The results indicated that the reduction rate of $PM_{10}$, $NO_2$, CO, and $SO_2$ was 30.1%, 17.9%, 11.6%, 9.7% (Case 1) and 22.8%, 21.0%, 9.0%, 8.0% (Case 2), respectively. This result suggested that air quality was significantly improved during the typhoon period than after the typhoon period by the rainfall.

Physicochemical and Catalytic Properties of NiSO4/CeO2-ZrO2 Catalyst Promoted with CeO2 for Acid Catalysis

  • Sohn, Jong-Rack;Shin, Dong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1265-1272
    • /
    • 2007
  • A solid acid catalyst, NiSO4/CeO2-ZrO2 was prepared simply by promoting ZrO2 with CeO2 and supporting nickel sulfate on CeO2-ZrO2. The support of NiSO4 on ZrO2 shifted the phase transition of ZrO2 from amorphous to tetragonal to higher temperatures because of the interaction between NiSO4 and ZrO2. The surface area of 10-NiSO4/1-CeO2-ZrO2 promoted with CeO2 and calcined at 600 oC was very high (83 m2/g) compared to that of unpromoted 10-NiSO4/ZrO2 (45 m2/g). This high surface area of 10-NiSO4/1-CeO2-ZrO2 was due to the promoting effect of CeO2 which makes zirconia a stable tetragonal phase as confirmed by XRD. The role of CeO2 was to form a thermally stable solid solution with zirconia and consequently to give high surface area and acidity of the sample, and high thermal stability of the surface sulfate species. 10-NiSO4/1- CeO2-ZrO2 containing 1 mol% CeO2 and 10 wt% NiSO4, and calcined at 600 oC exhibited maximum catalytic activities for both reactions, 2-propanol dehydration and cumene dealkylation.

Basic Characteristics of Slag Cement using CO2 Fixed Desulfurized Gypsum (CO2 고정 탈황석고를 사용한 슬래그 시멘트의 기초적 특성)

  • Chun-Jin Park;Jong-Ho Park;Sung-Kwan Seo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.25-31
    • /
    • 2023
  • In this study, the basic properties of CO2 immobilized desulfurized gypsum (CFBG) and the possibility of being used as a stimulus for slag cement were reviewed, and performance evaluation was conducted through a concrete mixing test. The main components of CFBG were CaO and SO3, and CaO and SO3 increased as the drying temperature increased. The moisture content of undried CFBG was 15.7 %, the drying temperature was 1.7 % and the drying temperature was 0.03 % at 105 ℃. Mortar using CFBG tended to have a lower flow value as the drying temperature increased, and the compressive strength was equivalent to that of the FGB use mixture. As a result of the concrete experiment using CFBG SC, both slump and air volume satisfied the target range after 60 minutes, and the compressive strength tended to increase overall compared to the ternary binder mixture.

Characteristics of Removal and Precipitation of Heavy Metals with pH change of Artificial Acid Mine Drainage (인공 산성광산배수의 pH변화에 의한 중금속 제거 및 침전 특성 연구)

  • Lee, Min Hyeon;Kim, Young Hun;Kim, Jeong Jin
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.529-539
    • /
    • 2019
  • In this study, heavy metal removal and precipitation characteristics with pH change were studied for artificial acid mine drainage. Artificial acid mine drainage was prepared using sulfates of iron, aluminum, copper, zinc, manganese which contained in acid mine drainage from abandoned mines. The single and mixed five heavy metal samples of Fe, Al, Cu, Zn, and Mn were prepared at initial concentrations of 30 and 70 mg/L. Fe and Al were mostly removed at pH 4.0 and 5.0, respectively, and other heavy metals gradually decreased with increasing pH. Concentration changes with increasing pH show generally similar trend for single and mixed heavy metal samples. The effect of removing heavy metals from aqueous solutions is not related to the initial concentration and depends on the pH change. XRD were used for mineral identification of precipitates and crystallinity of the mineral tended to increase with increasing pH. The precipitates that produced by decreasing the concentration of heavy metals in the aqueous solution composed of Fe-goethite(FeOOH), Al-basaluminite(Al4(SO4)(OH)10·4H2O), Cu-connellite(Cu19(OH)32(SO4)Cl4·3H2O) and tenorite(CuO), Zn-zincite(ZnO), and Mn-hausmannite(Mn3O4).

Air Quality Monitoring in Daejeon City with Long-Term NO2 and SO2 Passive Diffusive Samplers (장기 NO2 및 SO2 Passive Diffusive Sampler(PDS)를 이용한 대전시 대기질 모니터링)

  • Yim, Bong-Been;Kim, Sun-Tae;Jung, Jae-Ho;Lee, Bum-Jin
    • Journal of Environmental Science International
    • /
    • v.16 no.2
    • /
    • pp.187-195
    • /
    • 2007
  • Long-term passive diffusive samplers(PDS) have been used to measure $NO_2\;and\;SO_2$ concentrations at 21 sampling sites in Daejeon, Korea during the period of January 2000 - December 2002. The spatial distributions of annual $NO_2\;and\;SO_2$ concentrations were mapped. Average annual $NO_2$ concentration over the sampling period was $28.5{\pm}12.5\;ppb$, ranging from 1.2 to 81.7 ppb. Average annual $SO_2$ concentration over the sampling period was $7.7{\pm}4.8\;ppb$, ranging from 0.6 to 26.8 ppb. On average, $NO_2$ concentration was approximately 5.8%(1.6 ppb) larger in 2002. $SO_2$ concentration was decreased by 13%(1.1 ppb) during the sampling period. The seasonal variation of $NO_2\;and\;SO_2$ concentration was observed with a tendency to be higher in fall and winter. $NO_2\;and\;SO_2$, concentrations measured at different site types(patterns of land use) show significant difference. The observed difference in concentration was associated with difference in emissions of $NO_2$ from motor vehicles and $SO_2$ by non-traffic fuel consumption for heating.

Effect of Limestone Powder on Hydration of C3A-CaSO4·2H2O System (C3A-CaSO4·2H2O 계의 수화반응에 미치는 석회석 미분말의 영향)

  • Lee, Jong-Kyu;Chu, Yong-Sik;Song, Hun
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.584-588
    • /
    • 2011
  • In this work, effects of limestone powder on hydration of $C_3A-CaSO_4{\cdot}2H_2O$ system was discussed based on the XRD Quantitative analysis, and the possibility of Delayed Ettringite Formation was also discussed. The early hydration of $C_3A$ was delayed by addition of $CaCO_3$ powder. The delay effect was enhanced by increasing of $CaCO_3$ content and finer powder of $CaCO_3$ addition. After consumption of $CaSO_4{\cdot}2H_2O$, the reaction of $CaCO_3$ is started. Delayed Ettringite Formation would take place because monosulfoaluminate is not stable in presence of $CaCO_3$. In order to prevent the delayed ettringite formation in $C_3A-CaSO_4{\cdot}2H_2O-CaCO_3$ system, the reduction of monosulfoaluminate formation is important. Therefore, by increasing the amount of $CaCO_3$ addition and finer $CaCO_3$ powder addition, the delayed ettringite formation can be prevented.

A Study on the Non-Toxic Compound-based Multi-layered Radiation Shielding Sheet and Improvement of Properties (무독성 화합물 기반의 다층 구조 방사선 차폐 시트 개발과 특성 개선에 관한 연구)

  • Heo, Ye Ji;Yang, Seung u;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.149-155
    • /
    • 2020
  • Most of radiation protection clothing is made of lead with excellent radiation shielding because it has excellent process ability and economic efficiency and has a high atomic number. However, lead is classified as a hazardous heavy metal, and there is a risk of lead poisoning. Recently, research to replace lead has been actively conducted. In this study, a research on a shielding sheet with improved physical properties while maintaining the radiation shielding ability equivalent to that of conventional materials by mixing two materials that are harmless to the human body, such as BaSO4 and Bi2O3, and a silicone material binder Was performed. For comparison evaluation with the existing lead shielding sheet, the shielding rate was evaluated using a 40 degree shielding sheet having the highest porosity. As a result, it was analyzed that the shielding rate was superior to 9 % or more at the same thickness. In addition, as a result of studies to improve the physical properties of the shielding sheet, it was analyzed that the shielding sheet mixed with BaSO4/nylon/Bi2O3 was the best.

Characteristics of Fine Particles during Cold Front Passage in Busan, on March 19, 2020 (부산지역 2020년 3월 19일 한랭전선 통과 시 미세먼지 농도 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.30 no.6
    • /
    • pp.475-485
    • /
    • 2021
  • This research investigated the characteristics of fine particles during cold front passage in Busan, on March 19, 2020. The cold front speed was 17.4 m/s (about 63k km/hr), moving from the northwest to the southeast, and with a width of about 64 km. The backward trajectory analysis showed that a southern sea air parcel flowed into Busan before the cold front passage, carrying continental materials from China transported into Busan after cold front passage. The PM10 concentration in Busan showed a rapid increase after passing through the cold front, with PM2.5 showing a high concentration during cold front passage. The PM2.5/PM10 ratio was 0.10 - 0.30. When the cold front passed, SO42-, NO3-, Ca2+, NH4+, Na+, and K+ in PM2.5 showed a rapid increase, with SO42- showing the most significant increase. These results indicated that understanding the characteristics of fine particles during cold front passage in Busan could provide insight into establishing a strategy to control urban air quality.

Effects of Solubility of SO2 Gas on Continuous Bunsen Reaction using HIx Solution (HIx 용액을 이용한 연속식 분젠 반응에 미치는 SO2용해도의 영향)

  • KIM, JONGSEOK;PARK, CHUSIK;KANG, KYOUNGSOO;JEONG, SEONGUK;CHO, WON CHUL;KIM, YOUNG HO;BAE, KI KWANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • The Sulfur-Iodine thermochemical hydrogen production process (SI process) consists of the Bunsen reaction section, the $H_2SO_4$ decomposition section, and the HI decomposition section. The $HI_x$ solution ($I_2-HI-H_2O$) could be recycled to Bunsen reaction section from the HI decomposition section in the operation of the integrated SI process. The phase separation characteristic of the Bunsen reaction using the $HI_x$ solution was similar to that of $I_2-H_2O-SO_2$ system. On the other hands, the amount of produced $H_2SO_4$ phase was small. To investigate the effects of $SO_2$ solubility on Bunsen reaction, the continuous Bunsen reaction was performed at variation of the amounts of $SO_2$ gas. Also, it was carried out to make sure of the effects of partial pressure of $SO_2$ in the condition of 3bar of $SO_2-O_2$ atmosphere. As the results, the characteristic of Bunsen reaction was improved with increasing the amounts and solubility of $SO_2$ gas. The concentration of Bunsen products was changed by reverse Bunsen reaction and evaporation of HI after 12 h.