• Title/Summary/Keyword: SNR control

Search Result 189, Processing Time 0.026 seconds

Multiuser Heterogeneous-SNR MIMO Systems

  • Jo, Han-Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2607-2625
    • /
    • 2014
  • Previous studies on multiuser multiple-input multiple-output (MIMO) mostly assume a homogeneous signal-to-noise ratio (SNR), where each user has the same average SNR. However, real networks are more likely to feature heterogeneous SNRs (a random-valued average SNR). Motivated by this fact, we analyze a multiuser MIMO downlink with a zero-forcing (ZF) receiver in a heterogeneous SNR environment. A transmitter with Mantennas constructs M orthonormal beams and performs the SNR-based proportional fairness (S-PF) scheduling where data are transmitted to users each with the highest ratio of the SNR to the average SNR per beam. We develop a new analytical expression for the sum throughput of the multiuser MIMO system. Furthermore, simply modifying the expression provides the sum throughput for important special cases such as homogeneous SNR, max-rate scheduling, or high SNR. From the analysis, we obtain new insights (lemmas): i) S-PF scheduling maximizes the sum throughput in the homogeneous SNR and ii) under high SNR and a large number of users, S-PF scheduling yields the same multiuser diversity for both heterogeneous SNRs and homogeneous SNRs. Numerical simulation shows the interesting result that the sum throughput is not always proportional to M for a small number of users.

A SNR Estimation Algorithm for Digital Satellite Transponder (디지털 위성트랜스폰더를 위한 SNR 추정 알고리즘)

  • Seo, Kwang-Nam;Choi, Seung-Woon;Kim, Chong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9C
    • /
    • pp.729-734
    • /
    • 2010
  • In the initial stage of the communications between a base station and a satellite transponder, the base station transmits the frequency-sweeping un-modulated up-link carrier within a certain frequency range to acquire the doppler frequency shift and signal power between the base station and the satellite in orbital flight. The satellite transponder acquires and tracks the carrier in order to initialize the communication. To control such initialization process, the satellite receiver should analyze the input carrier signal in various ways. This paper presents an SNR estimation algorithm to control the initialization process. The proposed algorithm converts the input signal into the baseband polar coordinate representation and estimates the SNR via the statistics of the angular signal components as well as the status parameters to control the receiver. The Monte-Carlo simulations shows the validity of the estimation proposed.

Compensation for the decrease of output SNR of hadamard transform spectrometer with nonideal mask (비이상적 마스크로 인한 하다마드변환 스펙트럼 검파기 출력값의 신호대 잡음비 감소의 해결방안)

  • 남지탁;박진배;윤태성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.4-7
    • /
    • 1997
  • When we use Hadamard transform spectrometers (HTS), we can increase signal to noise ratio(SNR) by multiplexing which is done by masks. But if the mask has a single defective element, output-SNR decreases. In this paper the effect of a single defective element on the output-SNR is investigated. And a method of compensating for the defective mask element is presented.

  • PDF

Performance Improvement of Perceptual Filter Using Noise Energy Control (잡음 에너지 제어를 통한 지각 필터 성능 개선)

  • Seo Joung-Kook;Cha Hyung-Tai
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.43-51
    • /
    • 2005
  • In this paper, we propose an algorithm that improves a tone quality of a noisy audio signal in order to enhance a Performance of perceptual filter using noise energy control. Most of the algorithms which were proposed by the other researchers usually applied a filter using the noise energy acquired from a silent range. In this case. the improvement rate of tone quality decreases if the noise energy is changed by the magnitude or environment variation in a signal frame. But the Proposed method Provides the means to find a food estimated noise through energy control of the estimated noise which is obtained from a silent range. Also we can get the enhancement of tone qualify in low frequency band unlike other methods. To show the performance of the Proposed algorithm, various input signals which had a different signal-to-noise ratio (SNR) such as 5dB, l0dB, 15dB and 20dB were used to test the proposed algorithm. With the proposed algorithm, we could confirm the enhancement of tone quality in terms of segmental SNR (SSNR). noise-to-mask ration (NMR) and mean opinion score (MOS) test.

An artificial noise generation method for MODEM performance test in satellite communication system (위성통신 시스템에서 수신기 모뎀 성능을 시험하기 위한 인위 잡음 발생 방법)

  • Cho, Tae-Chong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.59-64
    • /
    • 2020
  • Occasionally, MODEM test in satellite communication systems are needed. But Rx terminals in satellite communications are designed to obtain high SNR generally, therefore artificial bad conditions and environments are demanded for the test. One of the typical method is satellite output power reduction. Using noise generator can be another method. However, these costs a lot of money, time, and procedures in reality. In order to overcome these problems, this paper proposes an artificial noise generation method for MODEM test in satellite communication systems. First of all, SNR of a general heterodyne Rx terminal is calculated. Based on the calculation, a new model which is including variable attenuator is proposed to increase noise level. Simulation results illustrate the variable attenuator can control SNR, and these show that MODEM test in satellite communication systems be possible.

A Computationally Efficient Scheduling Algorithm Capable of Controlling Throughput-Fairness Tradeoff (계산이 효율적인 전송률-형평성 트레이드오프 제어 스케줄링 알고리즘)

  • Lee, Min;Oh, Seong-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.121-127
    • /
    • 2010
  • In this paper, we propose a computationally efficient scheduling algorithm that can arbitrarily control the throughput-fairness tradeoff in a multiuser wireless communication environment. As a new scheduling criterion, we combine linearly two well-known scheduling criteria such as one of achieving the maximum sum throughput and the other of achieving the maximum fairness, so as to control the relative proportion of the throughput and the fairness according to a control factor. For linear combining two different criteria, their optimization directivenesses and the units should be unified first. To meet these requirements, we choose an instantaneous channel capacity as a scheduling criterion for maximizing the sum throughput and the average serving throughput for maximizing the fairness. Through a unified linear combining of two optimization objectives with the control factor, it can provide various throughput-fairness tradeoffs according to the control factors. For further simplification, we exploit a high signal-to-noise ratio (SNR) approximation of the instantaneous channel capacity. Through computer simulations, we evaluate the throughput and fairness performances of the proposed algorithm according to the control factors, assuming an independent Rayleigh fading multiuser channel. We also evaluate the proposed algorithm employing the high SNR approximation. From simulation results, we could see that the proposed algorithm can control arbitrarily the throughput-fairness performance between the performance of the scheduler aiming to the maximum sum throughput and that of the scheduler aiming to the maximum fairness, finally, we see that the high SNR approximation can give a satisfactory performance in this situation.

Performance Analysis of Energy Detection Spectrum Sensing Using Adaptive Threshold through Controlling False alarms (오경보 확률 제어를 통한 적응적 임계치 사용 에너지 검출 스펙트럼 센싱의 성능 분석)

  • Seo, SungIl;Lee, MiSun;Kim, Jinyoung
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.61-65
    • /
    • 2013
  • In this paper, we propose system model to solve conventional threshold problem of using fixed false alarm for energy spectrum sensing. Spectrum sensing reliability is ensured when Secondary user have high SNR. Thus, it is not reasonable using fixed optional false alarm without considering CR user's SNR. So, we propose adaptive threshold method. adaptive threshold is decided by controling FA according to CR user's SNR.

Performance Analysis of Assisted-Galileo Signal Acquisition Under Weak Signal Environment (약 신호 환경에서의 Assisted-Galileo 신호 획득 성능 분석)

  • Lim, Jeong-Min;Park, Ji-Won;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.646-652
    • /
    • 2013
  • EU's Galileo project is a market-based GNSS (Global Navigation Satellite System) that is under development. It is expected that Galileo will provide the positioning services based on new technologies in 2020s. Because Galileo E1 signal for OS (Open Service) shares the same center frequency with GPS L1 C/A signal, CBOC (Composite Binary Offset Carrier) modulation scheme is used in the E1 signal to guarantee interoperability between two systems. With E1 signal consisting of a data channel and a pilot channel at the same frequency band, there exist several options in designing signal acquisition for Assisted-Galileo receivers. Furthermore, compared to SNR worksheet of Assisted-GPS, some factors should be examined in Assisted-Galileo due to different correlation profile and code length of E1 signal. This paper presents SNR worksheets of Galileo E1 signals in E1-B and E1-C channel. Three implementation losses that are quite different from GPS are mainly analyzed in establishing SNR worksheets. In the worksheet, hybrid long integration of 1.5s is considered to acquire weak signal less than -150dBm. Simulation results show that the final SNR of E1-B signal with -150dBm is 19.4dB and that of E1-C signal is 25.2dB. Comparison of relative computation shows that E1-B channel is more profitable to acquire the strongest signal in weak signal environment. With information from the first satellite signal acquisition, fast acquisition of the weak signal around -155dBm can be performed with E1-C signal in the subsequent satellites.

Ground Station Antenna Pattern Design for Network-Based UAV Command and Control Communication Systems (네트워크 기반 무인기 제어 통신시스템을 위한 지상국 안테나 패턴 설계)

  • Kim, Kyung-Ho;Kim, Hee Wook;Jung, Young-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.5
    • /
    • pp.384-389
    • /
    • 2021
  • An optimal ground station (GS) antenna pattern design method for network-based UAV command and control communication systems considering complexity and performance is presented. The GS antenna consists of multiple side sectors and one upward sector. The antenna gain for each vertical/horizontal angle of the GS antenna according to the change of antenna design parameters such as the number of sectors, horizontal and vertical beam-width, and tilt-angle is modeled, and the effect of the parameter changes on the signal-to-noise ratio (SNR) distribution in the virtual three-dimensional space is analyzed. It is observed that the tilt-angle of the side sectors has the greatest effect on the performance, and the longer the distance between GSs, the higher the maximum altitude and the smaller the number of side sectors, the tilt-angle should be lower. In addition, it is observed that the wider vertical beam-width of the side sector is advantageous in maximizing the lowest SNR, but narrow vertical beam-width is advantageous in maximizing the average SNR.

Effect Analysis of Timing Offsets for Asynchronous MC-CDMA Uplink Systems (비동기 MC-CDMA 상향 링크 시스템에서의 시간 옵셋 영향 분석)

  • Ko, Kyun-Byoung;Woo, Choong-Chae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.8
    • /
    • pp.1-8
    • /
    • 2010
  • This paper models a symbol timing offset (STO) with respect to the guard period and the maximum access delay time for asynchronous multicarrier code division multiple access (MC-CDMA) uplink systems over frequency-selective multipath fading channels. Analytical derivation shows that STO causes desired signal power degradation and generates self-interferences. This effect of the STO on the average bit error rate (BER) and the effective signal-to-noise ratio (SNR) is evaluated. The approximated BER and the SNR loss caused by STO are then obtained as closed-form expressions. The tightness between the analytical result and the simulated one is verified for the different STOs and SNRs. Furthermore, the derived analytical results are verified via Monte Carlo simulations.