• 제목/요약/키워드: SNP Marker

검색결과 278건 처리시간 0.022초

Association between expression levels and growth trait-related SNPs located in promoters of the MC4R and MSTN genes in Spinibarbus hollandi

  • Yang, Yang;Lan, Zhaojun;Shu, Hu;Zhou, Huiqiang;Jiang, Xiaolu;Hou, Liping;Gu, Pinghua
    • Genes and Genomics
    • /
    • 제40권11호
    • /
    • pp.1119-1125
    • /
    • 2018
  • Melanocortin 4 receptor: (MC4R) and Myostatin (MSTN) are two important growth trait-related genes in animals. In this study, we showed that two SNPs, MC4R-719A>G and MSTN-519C>T, found in the promoters of the MC4R and MSTN genes, respectively, are both associated with growth traits in Spinibarbus hollandi. Furthermore, we observed that there were significant associations between the expression levels of the MC4R and MSTN genes and these two growth trait-related SNPs. The expression level of MC4R gene in brain was lower in GG genotype fish with extremely high growth performance than that in AA genotype fish with extremely low growth performance. Expression level of the MSTN gene in muscle was lower in TT genotype fish with extremely high growth performance than that in CC and CT genotype fish with lower growth performance. The results indicated that these SNPs located in the promoters of MC4R and MSTN are associated with growth-related traits through modification of gene expression levels. The MSTN and MC4R SNPs may have useful application in effective marker-assisted selection aimed to increase output in S. hollandi.

Analysis of the oxidized low density lipoprotein receptor 1 gene as a potential marker for carcass quality traits in Qinchuan cattle

  • Gui, Lin-sheng;Raza, Sayed Haidar Abbas;Jia, Jianlei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권1호
    • /
    • pp.58-62
    • /
    • 2019
  • Objective: The oxidized low density lipoprotein receptor 1 (OLR1) gene plays an important role in the degradation of oxidized low-density lipoprotein and adipocyte proliferation in mammals. For this reason, we aimed at investigating the association of OLR1 gene polymorphisms with carcass quality traits in Chinese Qinchuan cattle. Methods: The single nucleotide polymorphism (SNP) was identified in the 3' untranslated region of bovine OLR1 gene by DNA sequencing. In addition, the haplotype frequency and linkage disequilibrium estimates of three SNPs were evaluated in 520 individuals. Results: Results indicated that the studied three SNPs were within the range of moderate genetic diversity (0.25< polymorphism information content<0.5). Haplotype analysis of three SNPs showed that ten different haplotypes were identified, but only five haplotypes were listed as those with a frequency of <0.05 were excluded. The Hap3 ($-G_1T_2C_3-$) had the highest haplotype frequency (42.10%). Linkage disequilibrium analysis showed that the three SNPs had a low linkage ($r^2<0.001$). The T10588C and C10647T were significantly associated with backfat thickness and intramuscular fat content in Qinchuan cattle. Conclusion: Based on our results, we believe that the OLR1 gene could be a strong candidate gene for influencing carcass quality traits in Qinchuan cattle.

말에서 Dopamine Receptor D4 유전자의 변이 특성 분석 (Characterization of Dopamine Receptor D4 Gene Polymorphisms in Horses)

  • 최재영;최연주;이종안;신상민;윤민중;강용준;신문철;유지현;김현아;조인철;양병철;김남영
    • 생명과학회지
    • /
    • 제32권1호
    • /
    • pp.29-35
    • /
    • 2022
  • 본 연구는 여러 말 품종에서 Dopamine Receptor D4 (DRD4)의 유전적 다형성 및 Jeju crossbred에서의 기질특성과의 연관성을 분석하였다. DRD4 유전자의 다형성은 인간을 포함한 다양한 포유동물에서 기질과 연관된 후보 유전자이다. 말의 DRD4의 엑손 3번 영역에 있는 SNP G292A는 Thoroughbred에서 호기심과 경계와 관련이 있는 것으로 보고 되었다. 세 가지 말 품종에서 DRD4 유전자 내 존재하는 변이들의 다형성을 확인하기 위해 Sanger sequencing을 활용하였다. 제주마에서 각각의 빈도는 타 품종과 큰 차이를 보였다. 말의 품성 평가는 Jeju crossbred를 이용하여 수행하였으며, 기질 평가와 접촉 평가를 활용하여 각각 5개 항목과 2개 항목을 점수화 하였다. 품성 평가 결과 각 항목 간의 높은 상관관계를 확인하였다. 말의 DRD4 유전자 내 변이와 품성 평가 결과를 비교한 결과 대립유전자 A를 가지고 있을 때 기질 평가 5개 항목에서 모두 점수가 낮은 경향을 보이는 것을 확인하였으나 유의성은 없었다. Jeju crossbred의 G292A의 SNP과 혈액 내 도파민 수치를 비교한 결과 GA형이 GG형보다 약 2.87배 높은 결과를 확인하였다. 이번 연구를 통하여 DRD4 유전자 다형성과 말의 기질을 평가하기 위한 여러 평가 방법 및 신경전달물질과의 연관성을 확인할 수 있었다. 추가적인 연구를 통하여 품성 평가를 위한 유전자 마커로서 활용 가능할 것으로 사료된다.

Evidence of genome duplication revealed by sequence analysis of multi-loci expressed sequence tagesimple sequence repeat bands in Panax ginseng Meyer

  • Kim, Nam-Hoon;Choi, Hong-Il;Kim, Kyung Hee;Jang, Woojong;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • 제38권2호
    • /
    • pp.130-135
    • /
    • 2014
  • Background: Panax ginseng, the most famous medicinal herb, has a highly duplicated genome structure. However, the genome duplication of P. ginseng has not been characterized at the sequence level. Multiple band patterns have been consistently observed during the development of DNA markers using unique sequences in P. ginseng. Methods: We compared the sequences of multiple bands derived from unique expressed sequence tagsimple sequence repeat (EST-SSR) markers to investigate the sequence level genome duplication. Results: Reamplification and sequencing of the individual bands revealed that, for each marker, two bands around the expected size were genuine amplicons derived from two paralogous loci. In each case, one of the two bands was polymorphic, showing different allelic forms among nine ginseng cultivars, whereas the other band was usually monomorphic. Sequences derived from the two loci showed a high similarity, including the same primer-binding site, but each locus could be distinguished based on SSR number variations and additional single nucleotide polymorphisms (SNPs) or InDels. A locus-specific marker designed from the SNP site between the paralogous loci produced a single band that also showed clear polymorphism among ginseng cultivars. Conclusion: Our data imply that the recent genome duplication has resulted in two highly similar paralogous regions in the ginseng genome. The two paralogous sequences could be differentiated by large SSR number variations and one or two additional SNPs or InDels in every 100 bp of genic region, which can serve as a reliable identifier for each locus.

Association of Microsatellite Marker in FABP4 Gene with Marbling Score and Live Weight in Hanwoo

  • Lee, Seung-Hwan;Cho, Yong-Min;Kim, Hyeong-Cheol;Lim, Da-Jeong;Moon, Hee-Joo;Hong, Seong-Koo;Oh, Sung-Jong;Kim, Tae-Hun;Yoon, Du-Hak;Park, Eung-Woo
    • Journal of Animal Science and Technology
    • /
    • 제52권6호
    • /
    • pp.475-480
    • /
    • 2010
  • The bovine fatty acid binding protein 4 (FABP4) plays an important role to uptake intracellular fatty acid. It has been previously reported as a positional candidate gene for marbling score in livestock. The re-sequencing of FABP4 gene detected a polymorphic AT repeated sequence in intron II of FABP4 gene. Allelic distribution for this microsatellite marker was examined in other cattle breeds. A total of 8 alleles were detected with diverse repeat units (14 to 21 AT repeat) in Hanwoo and 7 breeds. Of the 8 alleles, the predominant alleles were $[AT]_{16}$, $[AT]_{18}$ and $[AT]_{19}$ in the Hanwoo and 7 cattle breeds. The linear mixed model for genotypic effect (3237AT) on carcass traits showed a significant effect on marbling score (MAR P=0.025) and live weight (LWT; P=0.04) in the 583 Hanwoo cattle population. Live weight (LW) was highest in the homozygous $(AT)_{17}$ genotype ($557.5{\pm}6.94$) and lowest in the heterozygous $(AT)_{16/17}$ genotype ($521.7{\pm}7.70$). On the other hand, the homozygous $(AT)_{17}$ genotype ($3.0{\pm}0.15$) has the highest effect on marbling score and the lowest effect was in homozygous (AT)$_{18}$ genotype ($2.2{\pm}0.15$). The marbling score difference between both groups was 0.8 which is around two times higher than SNP genotype effect on marbling score in Limousin $\times$ Wagyu crosses.

Improvement of Pre-harvest Sprouting Resistance in Korean japonica Varieties through a Precision Marker-based Breeding

  • Kamal Bhattarai;Patricia Izabelle Lopez;Sherry Lou Hechanova;Ji-Ung Jeung;Hyun-Sook Lee;Eok-Keun Ahn;Ung-Jo Hyun;Jong-Hee Lee;So-Myeong Lee;Jose E. Hernandez;Sung-Ryul Kim
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.269-269
    • /
    • 2022
  • Pre-harvest sprouting (PHS) on rice panicles is getting problematic in recent several years in Korea due to climate changes such as high temperature and more frequent typhoons during harvesting season. PHS negatively affects grain quality severely and also yield. Genetic improvement of Korean varieties (Oryza sativa ssp. japonica) through a marker assisted-backcross breeding (MAB) with the known PHS resistant genes must be one of ideal solutions. However, the final breeding products of MAB occasionally exhibit unwanted traits, especially the cross between genetically distant parents. This might be caused by linkage drag and/or presence of the gene-unlinked donor introgressions, resulting that the final products could not be released to the farmers. The major PHS resistance gene, Sdr4 (Seed dormancy 4) originated from an indica cultivar, Kasalath was selected as a donor gene. In order to avoid unexpected phenotypes in the breeding products, we performed a precision marker-based breeding (PMBB) consisting of foreground, recombinant, and background selections (FS, RS, and BS) which aim to develop 'single small introgression lines' (~100 kb introgression). Korean varieties (Ilpum and Gopum) were crossed with Kasalath. We developed Sdr4-allele specific markers for FS and a set of polymorphic flanking markers near the Sdr4 (-350kb and +420kb) for RS. To minimize linkage drag, the small introgression (< 125kb) containing Sdr4 was selected in Ilpum background (BC2F4) through 1st RS with ~1,200 F2 or BC1F2 plants (one side trimmed) and then 2nd RS with ~1,000 progenies from the 1st RS selected plants (another side trimmed). After RS, the selected lines were genotyped by using Infinium 7K SNP chip to detect other donor introgressions and the lines were backcrossed. Currently BS is on-going from the backcross-derived progenies with BS markers to remove residual introgressions. During the PMBB process, genetic effect of Sdr-4-Kasalath allele was confirmed in Ilpum and Gopum backgrounds by PHS phenotyping using the segregating BC2F3 or BC1F4 materials. The Sdr4 PMBB lines in Ilpum background (< 125kb introgression) will be valuable genetic resources to improve PHS resistance in modem popular temperate japonica varieties.

  • PDF

Evaluation of Genetic Variations in miRNA-Binding Sites of BRCA1 and BRCA2 Genes as Risk Factors for the Development of Early-Onset and/or Familial Breast Cancer

  • Erturk, Elif;Cecener, Gulsah;Polatkan, Volkan;Gokgoz, Sehsuvar;Egeli, Unal;Tunca, Berrin;Tezcan, Gulcin;Demirdogen, Elif;Ak, Secil;Tasdelen, Ismet
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권19호
    • /
    • pp.8319-8324
    • /
    • 2014
  • Although genetic markers identifying women at an increased risk of developing breast cancer exist, the majority of inherited risk factors remain elusive. Mutations in the BRCA1/BRCA2 gene confer a substantial increase in breast cancer risk, yet routine clinical genetic screening is limited to the coding regions and intronexon boundaries, precluding the identification of mutations in noncoding and untranslated regions. Because 3' untranslated region (3'UTR) polymorphisms disrupting microRNA (miRNA) binding can be functional and can act as genetic markers of cancer risk, we aimed to determine genetic variation in the 3'UTR of BRCA1/BRCA2 in familial and early-onset breast cancer patients with and without mutations in the coding regions of BRCA1/BRCA2 and to identify specific 3'UTR variants that may be risk factors for cancer development. The 3'UTRs of the BRCA1 and BRCA2 genes were screened by heteroduplex analysis and DNA sequencing in 100 patients from 46 BRCA1/2 families, 54 non-BRCA1/2 families, and 47 geographically matched controls. Two polymorphisms were identified. SNPs $c.^*1287C$ >T (rs12516) (BRCA1) and $c.^*105A$ >C (rs15869) (BRCA2) were identified in 27% and 24% of patients, respectively. These 2 variants were also identified in controls with no family history of cancer (23.4% and 23.4%, respectively). In comparison to variations in the 3'UTR region of the BRCA1/2 genes and the BRCA1/2 mutational status in patients, there was a statistically significant relationship between the BRCA1 gene polymorphism $c.^*1287C$ >T (rs12516) and BRCA1 mutations (p=0.035) by Fisher's Exact Test. SNP $c.^*1287C$ >T (rs12516) of the BRCA1 gene may have potential use as a genetic marker of an increased risk of developing breast cancer and likely represents a non-coding sequence variation in BRCA1 that impacts BRCA1 function and leads to increased early-onset and/or familial breast cancer risk in the Turkish population.

Effects of vertebral number variations on carcass traits and genotyping of Vertnin candidate gene in Kazakh sheep

  • Zhang, Zhifeng;Sun, Yawei;Du, Wei;He, Sangang;Liu, Mingjun;Tian, Changyan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권9호
    • /
    • pp.1234-1238
    • /
    • 2017
  • Objective: The vertebral number is associated with body length and carcass traits, which represents an economically important trait in farm animals. The variation of vertebral number has been observed in a few mammalian species. However, the variation of vertebral number and quantitative trait loci in sheep breeds have not been well addressed. Methods: In our investigation, the information including gender, age, carcass weight, carcass length and the number of thoracic and lumbar vertebrae from 624 China Kazakh sheep was collected. The effect of vertebral number variation on carcass weight and carcass length was estimated by general linear model. Further, the polymorphic sites of Vertnin (VRTN) gene were identified by sequencing, and the association of the genotype and vertebral number variation was analyzed by the one-way analysis of variance model. Results: The variation of thoracolumbar vertebrae number in Kazakh sheep (18 to 20) was smaller than that in Texel sheep (17 to 21). The individuals with 19 thoracolumbar vertebrae (T13L6) were dominant in Kazakh sheep (79.2%). The association study showed that the numbers of thoracolumbar vertebrae were positively correlated with the carcass length and carcass weight, statistically significant with carcass length. To investigate the association of thoracolumbar vertebrae number with VRTN gene, we genotyped the VRTN gene. A total of 9 polymorphic sites were detected and only a single nucleotide polymorphism (SNP) (rs426367238) was suggested to associate with thoracic vertebral number statistically. Conclusion: The variation of thoracolumbar vertebrae number positively associated with the carcass length and carcass weight, especially with the carcass length. VRTN gene polymorphism of the SNP (rs426367238) with significant effect on thoracic vertebral number could be as a candidate marker to further evaluate its role in influence of thoracolumbar vertebral number.

감귤 유전체 연구 동향 및 전망 (Current status and prospects of citrus genomics)

  • 김호방;임상현;김재준;박영철;윤수현;송관정
    • Journal of Plant Biotechnology
    • /
    • 제42권4호
    • /
    • pp.326-335
    • /
    • 2015
  • 감귤은 전 세계적으로 가장 많이 생산되는 주요 과수작물이고 비타민 C와 구연산 및 감귤 고유의 플라보노이드를 비롯한 다양한 기능성 성분으로 인해 건강 기능성 식품 소재로도 각광받고 있다. 그러나 긴 유년기와 배우체 불임, 주심배 발생 및 고도의 유전적 잡종성 등 감귤 특유의 생식생물학적 특성으로 인해 교배를 통한 전통 육종의 품종개발에 있어서는 가장 어려운 작물에 속한다. 지구 온난화, 소비자 욕구 변화 등으로 인해 고품질 감귤의 안정적 생산과 품종 다양화를 위한 체계적 육종 프로그램의 도입이 시급한 실정이다. 감귤에서도 분자 육종 프로그램을 통한 품종 육성을 위해 세계적으로 가장 많이 재배되는 스위트 오렌지와 클레멘타인 만다린에 대한 고품질 표준 유전체 정보가 최근에 확보되었다. 표준유전체 서열을 기반으로 다양한 품종 및 교배집단들에 대한 유전체 해독, 비교유전체 분석, GBS 등을 통해 형질연관 마커 발굴, 유전자 기능 연구 등이 이루어질 것으로 전망된다. 아울러 다양한 전사체 분석이 이루어지고 있으며, 유전자 기능 및 유전자 co-expression 네트워크의 이해를 증진할 수 있을 것이다. 유전체 및 전사체 분석을 통해 확보한 대규모 SNP, InDel 및 SSR의 다형성 분자마커 big data를 이용한 고밀도 연관 및 물리 지도 작성이 이루어지고 있고, 궁극적으로 통합지도 작성이 이루어지게 될 것이다. 이를 통해 가까운 장래에 감귤 특이 주요 농업형질 연관 유전자의 정확도 높은 map-based 클로닝 및 빠르고 효율적인 분자표지 선발육종이 이루어질 것이다.

참다래 유전체 연구 동향 (Current status and prospects of kiwifruit (Actinidia chinensis) genomics)

  • 김성철;김호방;좌재호;송관정
    • Journal of Plant Biotechnology
    • /
    • 제42권4호
    • /
    • pp.342-349
    • /
    • 2015
  • 키위는 세계적으로 1970년대 이후 상업화되어 최근 재배가 급속히 확대되고 있는 신종 과수이며, 국내에서도 재배와 소비량이 급격히 증가하고 있다. 키위는 자웅이주 낙엽성 덩굴 식물로 과피에 털이 있고 과육색이 다양한 특성을 가지고 있으며 배수성도 다양하나, 산업적인 품종 구성은 매우 단순하다. 독특한 식물적 특성에 기인한 진화 및 생물학적 관점은 물론 다양한 품종의 효율적 개발의 요구에 따라 최근 유전체 해석 및 활용 연구가 활발히 진행되고 있다. 키위 유전체 draft 서열과 엽록체 서열이 Illumina HiSeq 기반으로 각각 2013년과 2015년에 해독 되었으며 gene annotation 연구가 계속적으로 진행되고 있다. 과거 ESTs 기반의 전사체 분석에서 최근 RNA-seq 기반의 전사체 분석으로 전환되어 과일의 아스코르브산 생합성, 과육색 발현 및 성숙, 그리고 나무의 궤양병 저항성 관련 유전적 발현조절과 유전자 발굴 연구가 중점적으로 진행되고 있다. 전통육종의 효율을 증대하기 위한 분자표지 개발 및 유전자지도 작성에 있어서는 이전의 RFLP, RAPD, AFLP 기반의 연구에서 벗어나 NGS 기반의 유전체 및 전사체 정보의 해독에 의한 SSR 및 SNP 기반의 농업적으로 중요한 형질연관 분자마커 개발 및 고밀도 유전자지도 작성이 연구되고 있다. 그러나 국내 연구는 아직 제한적인 수준에서 진행되고 있다. 향후 키위 유전체 및 전사체 분석 연구는 가까운 장래에 실질적으로 분자육종에 적용될 것으로 전망된다.