• Title/Summary/Keyword: SN test

Search Result 551, Processing Time 0.141 seconds

Failure Analysis of BGA Test Socket Pins (BGA 검사 소켓 핀의 불량 분석 연구)

  • Kim, Myung-Sik;Bae, Kyoo-Sik
    • Korean Journal of Materials Research
    • /
    • v.18 no.9
    • /
    • pp.497-502
    • /
    • 2008
  • BGA test sockets failed earlier than the expected life-time due to abnormal signal delay, shown especially at the low temperature ($-50^{\circ}C$). Analysis of failed sockets was conducted by EDX, AES, and XRD. A SnO layer contaminated with C was found to form on the surface of socket pins. The formation of SnO layer was attributed to the repeated Sn transfer from BGA balls to pin surface and instant oxidation of fresh Sn. As a result, contact resistance increased, inducing signal delay. Abnormal signal delay at the low temperature was attributed to the increasing resistivity of Sn oxide with decreasing temperature, as manifested by the resistance measurement of $SnO_2$.

A Study on the Characteristic of Pb-free Sn-Ag-Bi-Ga Solder Alloys (무연 Sn-Ag-Bi-Ga계 솔더의 특성에 관한 연구)

  • 노보인;이보영
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.42-47
    • /
    • 2000
  • The object of this study is to estimate Sn-Ag-Bi-Ga solder alloy as a substitute for Sn-37Pb alloy. For Sn-Ag-Bi-Ga alloys, Ag, Bi and Ga contents are varied. (Ag : 1~5%, Ga : 3%, Bi : 3~6%) Comparing to Sn-37Pb alloy Sn-Ag-Bi-Ga alloys have wider melting temperature range up to max. $18.7^{\circ}C$. With increasing Ag, Bi contents, the wettability of the alloys increased up to max. 6.6 mN. The vickers hardness of the alloys was max. 46.4 Hv. The ultimate tensile stress of the alloys was max. 60.3 MPa and the elongation was max. 1.2%. The joint strength between circuit board and solder was max. 55.5 N and the joint strength between connector and solder was max. 176.1 N. There were no cracks in this alloys after thermal shock test.

  • PDF

In-situ Observation of Electromigration Behaviors of Eutectic SnPb Line (공정조성 SnPb 솔더에 대한 실시간 Electromigration 거동 관찰)

  • Kim Oh-Han;Yoon Min-Seung;Joo Young-Chang;Park Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.281-287
    • /
    • 2005
  • in-situ electromigration test was carried out for edge drift lines of eutectic SnPb solder using Scanning Electron Microscopy (SEM). The electromigration test for the eutectic SnPb solder sample was conducted at temperature of $90^{\circ}C$ and the current density of $6{\times}10^4A/cm^2$. Edge drift at cathode and hillock growth at anode were observed in-situ in a SEM chamber during electromigration test. It was clearly revealed that eutectic SnPb solder lines has an incubation stage before void formation during electromigration test, which seemed to be related to the void nucleation stage of flip chip solder electromigration behaviors.

  • PDF

A Study on the Implementation of Wave Soldering Process and the Solder Joint Reliability Using Sn-Cu-Ni Lead-free Solder (Sn-Cu-Ni계를 이용한 Pb-free Wave Soldering의 공정 적용 및 신뢰성에 관한 연구)

  • 유충식;정종만;김진수;김미진;이종연
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.4
    • /
    • pp.47-52
    • /
    • 2001
  • Pb-free wave soldering process of AC Adapter was implemented by six sigma method using Sn-Cu-Ni type solder. The solder joint appearance, microstructural change, a lift-off phenomenon and reliability were evaluated through thermal shuck test. $(Cu,Ni)_6/Sn_5$-type intermetallic compound of which thickness is about 5 $\mu\textrm{m}$ was found at solder joint between Sn-Cu-Ni solder and copper land. After applying the thermal shock test of as-soldered product up to 750 cycles, no crack was fecund at the solder joint. The newly developed product was superior to conventional one in terms of productivity and reliability.

  • PDF

Effects of Ag and Cu Additions on the Electrochemical Migration Susceptibility of Pb-free Solders in Na2SO4 Solution

  • Yoo, Y.R.;Nam, H.S.;Jung, J.Y.;Lee, S.B.;Park, Y.B.;Joo, Y.C.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.50-55
    • /
    • 2007
  • The smaller size and higher integration of advanced electronic package systems result in severe electrochemical reliability issues in microelectronic packaging due to higher electric field under high temperature and humidity conditions. Under these harsh conditions, electronic components respond to applied voltages by electrochemical ionization of metal and the formation of a filament, which leads to short-circuit failure of an electronic component, which is termed electrochemical migration. This work aims to evaluate electrochemical migration susceptibility of the pure Sn, Sn-3.5Ag, Sn-3.0Ag-0.5Cu solder alloys in $Na_{2}SO_{4}$. The water drop test was performed to understand the failure mechanism in a pad patterned solder alloy. The polarization test and anodic dissolution test were performed, and ionic species and concentration were analyzed. Ag and Cu additions increased the time to failure of Pb-free solder in 0.001 wt% $Na_{2}SO_{4}$ solution at room temperature and the dendrite was mainly composed of Sn regardless of the solders. In the case of SnAg solders, when Ag and Cu added to the solders, Ag and Cu improved the passivation behavior and pitting corrosion resistance and formed inert intermetallic compounds and thus the dissolution of Ag and Cu was suppressed; only Sn was dissolved. If ionic species is mainly Sn ion, dissolution content than cathodic deposition efficiency will affect the composition of the dendrite. Therefore, Ag and Cu additions improve the electrochemical migration resistance of SnAg and SnAgCu solders.

The Effect of Al and Sn Additions on Corrosion Behavior of Permanent Mold Casting Magnesium Alloy (금형 주조한 마그네슘 합금의 부식 거동에 미치는 Al 및 Sn의 영향)

  • Kim, Byeong Ho;Seo, Jae Hyun;Park, Kyung Chul
    • Journal of Korea Foundry Society
    • /
    • v.35 no.2
    • /
    • pp.36-43
    • /
    • 2015
  • In this study, the influences of aluminum and tin additions (individual and combined) on corrosion behavior of magnesium alloy have been determined. The studied alloys were fabricated by permanent mold casting method to measure the corrosion properties, a potentiodynamic test, hydrogen evolution test and immersion test were carried out in a 3.5% NaCl solution at pH 7.2. From the results of microstructure analysis, the Mg-9Al-1Zn alloy was found to be composed of ${\alpha}$-Mg and rod-like $Mg_{17}Al_{12}$ phase and the Mg-5Sn-5Al-1Zn alloy was found to be composed of ${\alpha}$-Mg, rod-like $Mg_{17}Al_{12}$ and $Mg_2Sn$ phases. In the case of the Mg-9Sn-1Zn alloy, the microstructure was composed of ${\alpha}$-Mg and eutectic $Mg_2Sn$ phase. With Sn addition (individual and combined), the corrosion resistance of the Mg alloys improved.

A Reliability Test for ph-free SnCu Plating Solution and It's Deposit (Sn-Cu 무연 도금용액 및 피막의 신뢰성평가)

  • Lee Hong-Kee;Hur Jin-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.6
    • /
    • pp.216-226
    • /
    • 2005
  • Pb-Free Technology was born with environmental problems of electronic component, Being connected by big and small project of every country. Also, in each country environment is connected and various standards of IEC, ISO, MIL, JIS, KS, JEDEC, EIAJ etc. All products can divide at solder part and finishing part These can tested each and synthetically divide. This research is reliability evaluation for three kind of ph-free SnCu solder plating solution and it's deposit. First, executed analysis about Pure Sn, SnCu solutions and plating surface by way similar to other plating solution analysis. Next, executed reliability about test method and equipment for reliable analyzer system construction. Next, data comparison and estimation, main estimation test method and item's choice. In this paper the systematic surface analysis and reliability for plating solutions and it's deposit in metal surface finishing processes could be shown.

Effect for Alloy Addition(Ta, Zr, Sn) on Mechanical Properties and Corrosion Resistance of cp-Ti for Dental Implants (인공치근용 cp-Ti에 첨가원소(Ta, Zr, Sn)가 기계적 특성 및 내식성에 미치는 영향)

  • Park, H.B.
    • Journal of Technologic Dentistry
    • /
    • v.21 no.1
    • /
    • pp.43-53
    • /
    • 1999
  • The mechannical properties and corrosion resistance of alloy added commercially pure titanium for dental implants have been investigated. Ti, To-65Zr, Ti-10.1Ta and Ti-17Sn alloys were melthed in arc furnace and the corrosion resistance of Ti alloys was evaluated by anodic polarization test. The microstructure and mechanical properties of Ti alloy were analysed by optical micrograph. hardness tester and instron. In isothermal test, Ti-10.1Ta and Ti-17Sn alloys exhibited the best oxidation resistance below $1100^{\circ}C$. Ti65Zr, Ti-10.1Ta and Ti-17Sn alloys showed better rockwell hardness compared with commercially pure. Ti As the result of the anodic polarization test in 5%HCl, it 5%HCl, it was known knows that Ti-65Zr, alloy showed a rapid decrease in current density at higher potenial in comparision with other Ti alloys.

  • PDF

A Study of Optimization of Electrodeposited CuSnZn Alloys Electrolyte and Process

  • Hur, Jin-Young;Lee, Ho-Nyun;Lee, Hong-Kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.2
    • /
    • pp.64-72
    • /
    • 2010
  • CuSnZn electroplating was investigated as alternative to Ni plating. Evaluation of electrolyte and plating process was performed to control physical characteristics of the film, and to collect practical data for application. Hull-cell test was conducted for basic comparison of two commercialized products and developed product. Based on hull-cell test results, long term test of three electrolytes was performed. Various analysis on long term tested electrolyte and samples have been done. Reliable and practical data was collected using FE-SEM (FEI, Sirion), EDX (ThermoNoran SIX-200E), ICP Spectrometer (GBC Scientifi c, Integra XL), FIB (FEI, Nova600) for anlysis. Physical analysis and reliability test of the long term tested film were also carried out. Through this investigation plating time, plating speed, electrolyte composition, electrolyte metal consumption, hardness and corrosion resistance has been compared. This set of data is used to predict and control the chemical composition of the film and modify the physical characteristics of the CuSnZn alloy.

Effect of Sn Addition on Corrosion Behavior of Zr-1.0 Nb-xSn Alloy System (Zr-1.0Nb-xSn 합금의 부식거동에 대한 Sn첨가의 영향)

  • Lee, Myeong-Ho;Choe, Byeong-Gwon;Jeong, Yong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.369-374
    • /
    • 2002
  • To investigate the corrosion behavior of Zr-1.0Nb-xSn (x=1.0, 1.5, 2.0 and 2.5wt. %)alloy system, the corrosion tests of Zr-1.0Nb-xSn alloys were carried out in steam at $400^{\circ}C$ for 125 days and in 70ppm LiOH solution at $360^{\circ}C$ for 180 days. The matrix microstructures of the test specimens were analyzed using TEM and the oxide structures on the test specimens were analyzed using XRD. It was found from the analyses that the more Sn content the alloy had, the faster it was corroded and with the increase of Sn content in the alloy the fraction of $t-ZrO_2$ to $m-ZrO_2$ was decreased. It was also found that the alloys having more Sn showed more dislocation density than those having less.