• Title/Summary/Keyword: SMART highway

검색결과 123건 처리시간 0.023초

Modal identification and model updating of a reinforced concrete bridge

  • El-Borgi, S.;Choura, S.;Ventura, C.;Baccouch, M.;Cherif, F.
    • Smart Structures and Systems
    • /
    • 제1권1호
    • /
    • pp.83-101
    • /
    • 2005
  • This paper summarizes the application of a rational methodology for the structural assessment of older reinforced concrete Tunisian bridges. This methodology is based on ambient vibration measurement of the bridge, identification of the structure's modal signature and finite element model updating. The selected case study is the Boujnah bridge of the Tunis-Msaken Highway. This bridge is made of a continuous four-span simply supported reinforced concrete slab without girders resting on elastomeric bearings at each support. Ambient vibration tests were conducted on the bridge using a data acquisition system with nine force-balance accelerometers placed at selected locations of the bridge. The Enhanced Frequency Domain Decomposition technique was applied to extract the dynamic characteristics of the bridge. The finite element model was updated in order to obtain a reasonable correlation between experimental and numerical modal properties. For the model updating part of the study, the parameters selected for the updating process include the concrete modulus of elasticity, the elastic bearing stiffness and the foundation spring stiffnesses. The primary objective of the paper is to demonstrate the use of the Enhanced Frequency Domain Decomposition technique combined with model updating to provide data that could be used to assess the structural condition of the selected bridge. The application of the proposed methodology led to a relatively faithful linear elastic model of the bridge in its present condition.

고속도로 환경에서 군집주행 서비스 요구사항에 대한 WAVE 통신시스템 성능 분석 (WAVE System Performance for Platooning Vehicle Service Requirements Under Highway Environments)

  • 송유승;최현균
    • 한국ITS학회 논문지
    • /
    • 제16권1호
    • /
    • pp.147-156
    • /
    • 2017
  • 본 논문에서 군집주행 서비스를 위해 단체표준에서 정의한 서비스 요구사항을 근거로 하여 WAVE 통신시스템의 성능을 분석하였다. 통신시스템의 주요 성능 파라미터로 제시되는 패킷 에러율과 지연시간 요구조건은 군집으로 주행하는 차량의 제어와 안전을 보장하기 위해 반드시 만족되어야 한다. 실험 시나리오는 크게 군집으로 주행차량들만 존재하는 경우, 통신 반경 내에 다른 간섭차량들이 존재하는 경우 그리고 통신범위 밖에 히든차량들이 존재하는 경우로 나누어 패킷 에러율과 평균지연시간을 분석하였다. 패킷 에러율과 지연시간은 앞에서 언급한 차량들의 토폴로지와 차량 주행속도 그리고 통신반경을 고려하여 모델링 하였다. 수치적 분석 결과는 패킷의 크기, 패킷 생성 주기 그리고 전송속도에 대해 수행되었다. 결론적으로 각 표준에서 정의한 군집주행 성능요구사항에 대해 WAVE 통신 시스템이 제공할 수 있는 안정적인 패킷 성공률과 지연시간 등에 대한 범위를 제시하였다.

Strain-based structural condition assessment of an instrumented arch bridge using FBG monitoring data

  • Ye, X.W.;Yi, Ting-Hua;Su, Y.H.;Liu, T.;Chen, B.
    • Smart Structures and Systems
    • /
    • 제20권2호
    • /
    • pp.139-150
    • /
    • 2017
  • The structural strain plays a significant role in structural condition assessment of in-service bridges in terms of structural bearing capacity, structural reliability level and entire safety redundancy. Therefore, it has been one of the most important parameters concerned by researchers and engineers engaged in structural health monitoring (SHM) practices. In this paper, an SHM system instrumented on the Jiubao Bridge located in Hangzhou, China is firstly introduced. This system involves nine subsystems and has been continuously operated for five years since 2012. As part of the SHM system, a total of 166 fiber Bragg grating (FBG) strain sensors are installed on the bridge to measure the dynamic strain responses of key structural components. Based on the strain monitoring data acquired in recent two years, the strain-based structural condition assessment of the Jiubao Bridge is carried out. The wavelet multi-resolution algorithm is applied to separate the temperature effect from the raw strain data. The obtained strain data under the normal traffic and wind condition and under the typhoon condition are examined for structural safety evaluation. The structural condition rating of the bridge in accordance with the AASHTO specification for condition evaluation and load and resistance factor rating of highway bridges is performed by use of the processed strain data in combination with finite element analysis. The analysis framework presented in this study can be used as a reference for facilitating the assessment, inspection and maintenance activities of in-service bridges instrumented with long-term SHM system.

결정궤환 기반 IEEE802.11p 다이버시티 모뎀 개발 (Decision Feedback Based Diversity Modem for IEEE802.11p WAVE)

  • 윤상훈;진성근;신대교;임기택;정한균
    • 전기전자학회논문지
    • /
    • 제19권3호
    • /
    • pp.400-406
    • /
    • 2015
  • 본 논문에서는 IEEE 802.11p WAVE 모뎀을 위한 다이버시티 모뎀 구조를 제안하고 설계하였으며, 이를 실차에 장착하여 성능테스트를 수행하였다. 제안한 구조는 듀얼채널과 다이버시티 기능을 선택적으로 수행할 수 있으며, 선택적 안테나 다이버시티와 Maximum Ratio Combining (MRC) 다이버시티 기능 중하나를 선택하여 수신할 수 있다. 개발된 구조는 HDL로 설계되어 Xillinx Kintex7보드를 이용하여 실도로에서 실차에 장착하여 테스트를 수행하여 성능을 검증하였다. 실험결과 개발된 다이버시티 모뎀은 단일 채널 모뎀에 비하여 안정적인 통신 성공률을 유지할 수 있으며, 전송거리도 안테나 후면 수신시 최소 100%이상 향상됨을 확인하였다.

지능형 도로 교통망을 위한 WAVE 시스템 구현 (Implementation of WAVE system for ITS)

  • 이세연;정한균;신대교;임기택;이주신
    • 한국항행학회논문지
    • /
    • 제13권6호
    • /
    • pp.933-942
    • /
    • 2009
  • 본 논문에서는 IEEE 802.11a PHY를 기반으로 IEEE 802.11p MAC(Medium Access Control)과 IEEE P1609.3을 이용하여 IT 기반 지능형 도로 교통 체계를 위한 WAVE(Wireless Access in Vehicular Environment) 기술을 구현하였다. 구현된 WAVE 시스템은 최대 120km/h의 속도에서 노변 기지국과 차량 간에 최대 0.5km 범위 내에서 하향 기준 최대 12Mbps의 전송 속도로 통신이 가능하게 하였다. ITS를 위한 WAVE 시스템의 적합성 검증을 위해 도로에서의 저속 및 고속 주행 시 통신 반경 크기, 링크 접속 시간, 데이터 전송 속도, 오류율, 지연시간 등의 파라미터를 측정하여 WAVE가 IT 기반 ITS에 적합하다는 것을 입증하였다.

  • PDF

마찰복원형 지진격리장치가 설치된 케이블교량의 성능 기반 내진설계법 개선(I-실 교량 실험 결과 분석) (Improvement of the Performance Based Seismic Design Method of Cable Supported Bridges with Resilient-Friction Base Isolation Systems (I- Analysis of Field Testing of Cable Supported Bridge))

  • 길흥배;박선규;한경봉;윤완석
    • 한국지진공학회논문집
    • /
    • 제24권4호
    • /
    • pp.157-167
    • /
    • 2020
  • In this study, a field bridge test was conducted to find the dynamic properties of cable supported bridges with resilient-friction base isolation systems (R-FBI). Various ambient vibration tests were performed to estimate dynamic properties of a test bridge using trucks in a non-transportation state before opening of the bridge and by ordinary traffic loadings about one year later after opening of the bridge. The dynamic properties found from the results of the tests were compared with an analysis model. From the result of the ambient vibration tests of the cable supported bridge with R-FBI, it was confirmed that the dynamic properties were sensitive to the stiffness of the R-FBI in the bridge, and the seismic analysis model of the test bridge using the effective stiffness of the R-FBI was insufficient for reflecting the dynamic behavior of the bridge. In the case of cable supported bridges, the seismic design must follow the "Korean Highway Bridge Design Code (Limit State Design) for Cable supported bridges." Therefore, in order to reflect the actual behavior characteristics of the R-FBI installed on cable-supported bridges, an improved seismic design procedure should be proposed.

주행속도와 기하구조에 따른 운전자 불안뇌파 분석 -고속주행시를 중심으로- (A Study of the Relationship between Driver's Anxiety EEG & Driving Speed in Motorway Sections)

  • 임준범;이수범;김근혁;김상엽;최재성
    • 한국안전학회지
    • /
    • 제27권3호
    • /
    • pp.167-175
    • /
    • 2012
  • For establishing a standard of design element of the smart highway, this study investigated driver's anxiety EEG according to running speeds and geometric designs. Also, the experiment was implemented on 60 subjects. Based on running speed data and brainwave data, which were obtained from the experiment, this study analyzes anxiety EEG according to running speeds and geometric designs, and finally draws a forecasting model of anxiety EEG by selecting affecting factors of anxiety EEG. Forecasting model shows that left curve is the most influential on anxiety EEG figure. The reason is because when driver is driving on the first-lane, his or her visibility is impeded by a median strip. For this reason, anxiety EEG figure increases. And also steep downward slope and large radius of curve are heavily influential on driver's anxiety EEG figure. It is judged that anxiety EEG figure is increased by high speed on those section. Thus, the forecasting model of anxiety EEG suggested on this study will be utilized for design phase, and will decide the design speed on the superhighway. So, it will be used to make practical and safety road.

Mechanisms of thermally induced deflection of a long-span cable-stayed bridge

  • Zhou, Yi;Sun, Limin;Peng, Zhijian
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.505-522
    • /
    • 2015
  • Variation of temperature is a primary environmental factor that affects the behavior of structures. Therefore, understanding the mechanisms of normal temperature-induced variations of structural behavior would help in distinguishing them from anomalies. In this study, we used the structural health monitoring data of the Shanghai Yangtze River Bridge, a steel girder cable-stayed bridge, to investigate the mechanisms of thermally induced vertical deflection ($D_T$) at mid-span of such bridges. The $D_T$ results from a multisource combination of thermal expansion effects of the cable temperature ($T_{Cab}$), girder temperature ($T_{Gir}$), girder differential temperature ($T_{Dif}$), and tower temperature ($T_{Tow}$). It could be approximated by multiple linear superpositions under operational conditions. The sensitivities of $D_T$ of the Shanghai Yangtze River Bridge to the above temperatures were in the following order: $T_{Cab}$ > $T_{Gir}$ > $T_{Tow}$ > $T_{Dif}$. However, the direction of the effect of $T_{Cab}$ was observed to be opposite to that of the other three temperatures, and the magnitudes of the effects of $T_{Cab}$ and $T_{Gir}$ were found to be almost one order greater than those of $T_{Dif}$ and $T_{Tow}$. The mechanisms of the thermally induced vertical deflection variation at mid-span of a cable-stayed bridge as well as the analytical methodology adopted in this study could be applicable for other long-span cable-stayed bridges.

사회연결망 분석을 활용한 고속도로 유휴부지의 물류센터 활용 방안에 관한 연구 (Research on the Use of Logistics Centers in Idle site on Highway Using Social Network Analysis)

  • 공인택;신광섭
    • 한국빅데이터학회지
    • /
    • 제6권1호
    • /
    • pp.1-12
    • /
    • 2021
  • 모바일 기반 온라인 쇼핑의 급성장과 COVID-19로 인해 시작된 비대면 비즈니스의 성장은 택배와 같은 물류 서비스 수요를 폭발적인 증가를 이끌어냈다. 급격하게 성장한 수요에 대응하기 위해 대부분의 물류·유통기업들은 도심 내 풀필먼트 센터 구축을 통한 고객 서비스 수준 향상을 위해 노력하고 있다. 그러나, 높은 지가와 교통 체증 등과 같은 사회적 요인에 의해 도심 내 풀필먼트 센터를 확보하는 데 큰 어려움을 겪고 있다. 본 연구에서는 향후 고속도로에 스마트톨링 서비스가 전면 확대됨에 따라 유휴부지로 전환될 요금소 부지를 공유물류센터로 전환하기 위한 후보지 선정 방안을 제시한다. 이를 위해 사회연결망 분석을 통해 각 후보지들의 중심성을 분석하였으며, 중심성 평가의 특성에 따른 결과의 해석을 위한 네트워크 구조를 거리기반과 시간기반의 두 가지 방법으로 재설계하여 평가하였다. 누적된 중요도를 기준으로 적정 후보지 군을 선택하는데 활용될 수 있을 것이다.

Seismic damage mitigation of bridges with self-adaptive SMA-cable-based bearings

  • Zheng, Yue;Dong, You;Chen, Bo;Anwar, Ghazanfar Ali
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.127-139
    • /
    • 2019
  • Residual drifts after an earthquake can incur huge repair costs and might need to replace the infrastructure because of its non-reparability. Proper functioning of bridges is also essential in the aftermath of an earthquake. In order to mitigate pounding and unseating damage of bridges subjected to earthquakes, a self-adaptive Ni-Ti shape memory alloy (SMA)-cable-based frictional sliding bearing (SMAFSB) is proposed considering self-adaptive centering, high energy dissipation, better fatigue, and corrosion resistance from SMA-cable component. The developed novel bearing is associated with the properties of modularity, replaceability, and earthquake isolation capacity, which could reduce the repair time and increase the resilience of highway bridges. To evaluate the super-elasticity of the SMA-cable, pseudo-static tests and numerical simulation on the SMA-cable specimens with a diameter of 7 mm are conducted and one dimensional (1D) constitutive hysteretic model of the SMAFSB is developed considering the effects of gap, self-centering, and high energy dissipation. Two types of the SMAFSB (i.e., movable and fixed SMAFSBs) are applied to a two-span continuous reinforced concrete (RC) bridge. The seismic vulnerabilities of the RC bridge, utilizing movable SMAFSB with the constant gap size of 60 mm and the fixed SMAFSBs with different gap sizes (e.g., 0, 30, and 60 mm), are assessed at component and system levels, respectively. It can be observed that the fixed SMAFSB with a gap of 30 mm gained the most retrofitting effect among the three cases.