• Title/Summary/Keyword: SMAD3

Search Result 125, Processing Time 0.028 seconds

Regulation of alternative macrophage activation by MSCs derived hypoxic conditioned medium, via the TGF-β1/Smad3 pathway

  • Kim, Ran;Song, Byeong-Wook;Kim, Minji;Kim, Won Jung;Lee, Hee Won;Lee, Min Young;Kim, Jongmin;Chang, Woochul
    • BMB Reports
    • /
    • v.53 no.11
    • /
    • pp.600-604
    • /
    • 2020
  • Macrophages are re-educated and polarized in response to myocardial infarction (MI). The M2 anti-inflammatory phenotype is a known dominator of late stage MI. Mesenchymal stem cells (MSCs) represent a promising tool for cell therapy, particularly heart related diseases. In general, MSCs induce alteration of the macrophage subtype from M1 to M2, both in vitro and in vivo. We conjectured that hypoxic conditions can promote secretome productivity of MSCs. Hypoxia induces TGF-β1 expression, and TGF-β1 mediates M2 macrophage polarization for anti-inflammation and angiogenesis in infarcted areas. We hypothesized that macrophages undergo advanced M2 polarization after exposure to MSCs in hypoxia. Treatment of MSCs derived hypoxic conditioned medium (hypo-CM) promoted M2 phenotype and neovascularization through the TGF-β1/Smad3 pathway. In addition, hypo-CM derived from MSCs improved restoration of ischemic heart, such as attenuating cell apoptosis and fibrosis, and ameliorating microvessel density. Based on our results, we propose a new therapeutic method for effective MI treatment using regulation of macrophage polarization.

Effect of Differentiation for Mouse Myoblast $C_{2}C_{12}$ Cells against Myostatin expression from Dodamtang (도담탕(導痰湯)이 $C_{2}C_{12}$세포주로부터 myostatin발현에 의한 심근에 미치는 영향)

  • Lee, You-Seung;Shin, Yoo-Jeong;Park, Jong-Hyuk;Kim, Seung-Mo;Paek, Kyung-Min;Park, Chi-Sang
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.243-257
    • /
    • 2008
  • Myostatin, a negative regulator of myogenesis, is shown to function by controlling the proliferation of myoblasts. In this study we show that myostatin is an inhibitor of myoblast differentiation and that this inhibition is mediated through Smad 3. To determine MyoD expression by Dodamtang treatment, we compared the expression pattern of $C_{2}C_{12}$ mouse myoblasts that constitutively express myostatin with control cells. In vitro, increasing concentrations of Dodamtang reversibly prevented the myogenic blockage of myoblasts by myostatin expression. ELISA assay, Western and confocal analysis indicated that treatment of Dodamtang to the low serum culture media increased the levels of MyoD leading to the inhibition of myogenic differentiation by myostatin. The stable transfection of $C_{2}C_{12}$ myoblasts with myostatin expressing constructs did rescue MyoD-induced myogenic differentiation. Consistent with this, the treatment of Dodamtang rescued the expression of a MyoD in $C_{2}C_{12}$ myoblasts treated with myostatin. Taken together, these results suggest that induction of MyoD by Dodamtang inhibits myostatin activity and expression via SMAD3 resulting in the rescue of the myoblasts to differentiate into myotubes. Thus we propose that myostatin action by Dodamtang plays a critical role in myogenic differentiation and that the muscular hyperplasia and hypertrophy seen in animals that blockage of functional myostatin is because of deregulated proliferation and differentiation of myoblasts.

  • PDF

Inhibitory Effect of Fucoidan on TGF-β1-Induced Activation of Human Pulmonary Fibroblasts (후코이단에 의한 인간 폐 섬유모세포의 활성 억제 효과)

  • Yim, Mi-Jin;Lee, Dae-Sung;Choi, Grace;Lee, Jeong Min;Choi, Il-Whan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.6
    • /
    • pp.807-814
    • /
    • 2016
  • Fucoidan, one of the dominant sulfated polysaccharides extracted from brown seaweed, possesses a wide range of biological activities. Transforming growth $factor-{\beta}$ ($TGF-{\beta}$) plays a pivotal role in the pathogenesis of pulmonary fibrosis, by stimulating the synthesis of profibrotic factors. In this study, we investigated the in vitro effects of fucoidan on collagen synthesis, ${\alpha}-smooth$ muscle actin (${\alpha}-SMA$) expression, and interleukin (IL)-6 production in $TGF-{\beta}$-stimulated human pulmonary fibroblasts. The expression of type I collagen and ${\alpha}-SMA$ was detected by Western blot, and the production of IL-6 by enzyme-linked immunosorbent assay. $TGF-{\beta}1$ treatment of pulmonary fibroblasts enhanced the expression of ${\alpha}-SMA$, type I collagen, and IL-6 whereas these effects were inhibited in cells pretreated with fucoidan. The activation of Smad2/3, p38 mitogen-activated protein kinases (MAPKs), and Akt was also inhibited in fucoidan-pretreated, $TGF-{\beta}1-stimulated$ human pulmonary fibroblasts. These data demonstrate the anti-fibrotic potential of fucoidan in $TGF-{\beta}-induced$ human pulmonary fibroblasts, via the inhibition of Smad2/3, p38 MAPKs, and Akt phosphorylation. Our results suggest the therapeutic potential of fucoidan in the prevention or treatment of pulmonary fibrosis.

The Mechanism of Crinum asiaticum var. japonicum on the Activation of Anagen (문주란의 모발 성장기 유도 기전)

  • Kang, Jung-Il;Choi, Ju Hwan;Lee, Jong Gun;Yoo, Eun-Sook;Kim, Young Ho;Kang, Hee-Kyoung
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.2
    • /
    • pp.148-154
    • /
    • 2017
  • Crinum asiaticum var. japonicum and its active component, norgalanthamine have been reported to have hair growth-promoting effect via the proliferation of dermal papilla cells. In this study, we investigated the other mechanisms of C. asiaticum extract var. japonicum and norgalanthamine on the hair growth. The C. asiaticum var. japonicum extract inhibited $5{\alpha}$-reductase activity by 16%, which converts testosterone to dihydrotestosterone (DHT), a main cause of androgenetic alopecia, whereas the C. asiaticum var. japonicum extract didn't function as an opener of the $K_{ATP}$ channel. On the other hand, we examined whether norgalanthamine can inhibit transforming growth factor-${\beta}$ (TGF-${\beta}$) signal pathway, which is essential in the regression induction of hair growth. Norgalanthamine inhibited the phosphorylation of Smad2/3 on TGF-${\beta}1$-induced canonical pathway in human keratinocyte HaCaT cells. These results suggested that the C. asiaticum var. japonicum extract and norgalanthamine had the potential to influence hair growth through the inhibition of $5{\alpha}$-reductase activity and TGF-${\beta}1$-induced canonical pathway.

Anti-Inflammatory and Anti-Fibrotic Activities of Nocardiopsis sp. 13G027 in Lipopolysaccharides-Induced RAW 264.7 Macrophages and Transforming Growth Factor Beta-1-Stimulated Nasal Polyp-Derived Fibroblasts

  • Choi, Grace;Kim, Geum Jin;Choi, Hyukjae;Choi, Il-Whan;Lee, Dae-Sung
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.543-551
    • /
    • 2021
  • Nocardiopsis species produce bioactive compounds, such as antimicrobial and anti-cancer agents and toxins. However, no reports have described their anti-inflammatory and anti-fibrotic effects during nasal polyp (NP) formation. In this study, we investigated whether marine-derived bacterial Nocardiopsis sp. 13G027 exerts anti-inflammatory and anti-fibrotic effects on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and transforming growth factor (TGF)-β1-induced NP-derived fibroblasts (NPDFs). Nitric oxide (NO) and prostaglandin E2 (PGE2) levels were analyzed. Extract from Nocardiopsis sp. 13G027 significantly inhibited the upregulation of NO and PGE2 in LPS-activated RAW 264.7 macrophages. The expression of mitogen-activated protein kinases (MAPKs) and protein kinase B (Akt/PKB) in LPS-induced RAW 264.7 macrophages was evaluated; smooth muscle alpha-actin (α-SMA), collagen type I (Col-1), and fibronectin also phosphorylated small mothers against decapentaplegic (SMAD) 2 and 3 in TGF-β1-stimulated NPDFs. The Nocardiopsis sp. 13G027 extract suppressed the phosphorylation of MAPKs and Akt and the DNA-binding activity of activator protein 1 (AP-1). The expression of pro-fibrotic components such as α-SMA, Col-1, fibronectin, and SMAD2/3 was inhibited in TGF-β1-exposed NPDFs. These findings suggest that Nocardiopsis sp. 13G027 has the potential to treat inflammatory disorders, such as NP formation.

All-trans retinoic acid alters the expression of adipogenic genes during the differentiation of bovine intramuscular and subcutaneous adipocytes

  • Chung, Ki Yong;Kim, Jongkyoo;Johnson, Bradley J.
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1397-1410
    • /
    • 2021
  • The present study was designed to determine the influence of all-trans retinoic acid (ATRA) on adipogenesis-related gene regulation in bovine intramuscular (IM) and subcutaneous (SC) adipose cells during differentiation. Bovine IM and SC adipocytes were isolated from three 19-mo-old, crossbred steers. Adipogenic differentiation was induced upon cultured IM and SC preadipocytes with various doses (0, 0.001, 0.01, 0.1, 1 µM) of ATRA. After 96 h of incubation, cells were harvested and used to measure the gene expression of CCAAT/Enhancer binding protein β (C/EBPβ), peroxisome proliferator-activated receptor (PPAR) γ, glucose transporter 4 (GLUT4), stearoyl CoA desaturase (SCD), and Smad transcription factor 3 (Smad3) relative to the quantity of ribosomal protein subunit 9 (RPS 9). Retinoic acid receptor (RAR) antagonist also tested to identify the effect of ATRA on PPARγ -RAR related gene expression in IM cells. The addition of ATRA to bovine IM decreased (p < 0.05) expression of PPARγ. The expression of PPARγ was also tended to be downregulated (p < 0.1) in high levels (10 µM) of ATRA treatment in SC cells. The treatment of RAR antagonist increased the expression of PPARγ in IM cells. Expression of C/EBPβ decreased (p < 0.05) in SC, but no change was observed in IM (p > 0.05). Increasing levels of ATRA may block adipogenic differentiation via transcriptional regulation of PPARγ. The efficacy of ATRA treatment in adipose cells may vary depending on the location.

Ginsenosides Rk1 and Rg5 inhibit transforming growth factor-β1-induced epithelial-mesenchymal transition and suppress migration, invasion, anoikis resistance, and development of stem-like features in lung cancer

  • Kim, Hyunhee;Choi, Pilju;Kim, Taejung;Kim, Youngseok;Song, Bong Geun;Park, Young-Tae;Choi, Seon-Jun;Yoon, Cheol Hee;Lim, Won-Chul;Ko, Hyeonseok;Ham, Jungyeob
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.134-148
    • /
    • 2021
  • Background: Lung cancer has a high incidence worldwide, and most lung cancer-associated deaths are attributable to cancer metastasis. Although several medicinal properties of Panax ginseng Meyer have been reported, the effect of ginsenosides Rk1 and Rg5 on epithelial-mesenchymal transition (EMT) stimulated by transforming growth factor beta 1 (TGF-β1) and self-renewal in A549 cells is relatively unknown. Methods: We treated TGF-β1 or alternatively Rk1 and Rg5 in A549 cells. We used western blot analysis, real-time polymerase chain reaction (qPCR), wound healing assay, Matrigel invasion assay, and anoikis assays to determine the effect of Rk1 and Rg5 on TGF-mediated EMT in lung cancer cell. In addition, we performed tumorsphere formation assays and real-time PCR to evaluate the stem-like properties. Results: EMT is induced by TGF-β1 in A549 cells causing the development of cancer stem-like features. Expression of E-cadherin, an epithelial marker, decreased and an increase in vimentin expression was noted. Cell mobility, invasiveness, and anoikis resistance were enhanced with TGF-β1 treatment. In addition, the expression of stem cell markers, CD44, and CD133, was also increased. Treatment with Rk1 and Rg5 suppressed EMT by TGF-β1 and the development of stemness in a dose-dependent manner. Additionally, Rk1 and Rg5 markedly suppressed TGF-β1-induced metalloproteinase-2/9 (MMP2/9) activity, and activation of Smad2/3 and nuclear factor kappa B/extra-cellular signal regulated kinases (NF-kB/ERK) pathways in lung cancer cells. Conclusions: Rk1 and Rg5 regulate the EMT inducing TGF-β1 by suppressing the Smad and NF-κB/ERK pathways (non-Smad pathway).

Involvement of TGF-β1 Signaling in Cardiomyocyte Differentiation from P19CL6 Cells

  • Lim, Joong-Yeon;Kim, Won Ho;Kim, Joon;Park, Sang Ick
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.431-436
    • /
    • 2007
  • Stem cell-based therapy is being considered as an alternative treatment for cardiomyopathy. Hence understanding the basic molecular mechanisms of cardiomyocyte differentiation is important. Besides BMP or Wnt family proteins, $TGF-{\beta}$ family members are thought to play a role in cardiac development and differentiation. Although $TGF-{\beta}$ has been reported to induce cardiac differentiation in embryonic stem cells, the differential role of $TGF-{\beta}$ isoforms has not been elucidated. In this study, employing the DMSO-induced cardiomyocyte differentiation system using P19CL6 mouse embryonic teratocarcinoma stem cells, we investigated the $TGF-{\beta}$-induced signaling pathway in cardiomyocyte differentiation. $TGF-{\beta}1$, but not the other two isoforms of $TGF-{\beta}$, was induced at the mRNA and protein level at an early stage of differentiation, and Smad2 phosphorylation increased in parallel with $TGF-{\beta}1$ induction. Inhibition of $TGF-{\beta}1$ activity with $TGF-{\beta}1$-specific neutralizing antibody reduced cell cycle arrest as well as expression of the CDK inhibitor $p21^{WAF1}$. The antibody also inhibited induction of the cardiac transcription factor Nkx2.5. Taken together, these results suggest that $TGF-{\beta}1$ is involved in cardiomyocyte differentiation by regulating cell cycle progression and cardiac gene expression in an autocrine or paracrine manner.

Mining Proteins Associated with Oral Squamous Cell Carcinoma in Complex Networks

  • Liu, Ying;Liu, Chuan-Xia;Wu, Zhong-Ting;Ge, Lin;Zhou, Hong-Mei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4621-4625
    • /
    • 2013
  • The purpose of this study was to construct a protein-protein interaction (PPI) network related to oral squamous cell carcinoma (OSCC). Each protein was ranked and those most associated with OSCC were mined within the network. First, OSCC-related genes were retrieved from the Online Mendelian Inheritance in Man (OMIM) database. Then they were mapped to their protein identifiers and a seed set of proteins was built. The seed proteins were expanded using the nearest neighbor expansion method to construct a PPI network through the Online Predicated Human Interaction Database (OPHID). The network was verified to be statistically significant, the score of each protein was evaluated by algorithm, then the OSCC-related proteins were ranked. 38 OSCC related seed proteins were expanded to 750 protein pairs. A protein-protein interaction nerwork was then constructed and the 30 top-ranked proteins listed. The four highest-scoring seed proteins were SMAD4, CTNNB1, HRAS, NOTCH1, and four non-seed proteins P53, EP300, SMAD3, SRC were mined using the nearest neighbor expansion method. The methods shown here may facilitate the discovery of important OSCC proteins and guide medical researchers in further pertinent studies.

Effect of Injin Fraction on Hepatic Fibrosis induced by $TGF-{\beta}1$ (인진이 $TGF-{\beta}1$ 유도성 간섬유화에 미치는 영향)

  • 신성만;김영철;이장훈;우흥정
    • The Journal of Korean Medicine
    • /
    • v.22 no.3
    • /
    • pp.141-155
    • /
    • 2001
  • Objective : The aim of this study is to investigate the effect of Injin fractions on hepatic fibrosis induced by $TGF-{\beta}1$. Method : $TGF-{\beta}1$ mRNA, protein, $TGF-{\beta}1$ receptor, Smad family and PAI-I mRNA were studied in HepG2 cell, and the proliferation, connective tissue growth factor, fibronectin and collagen type I mRNA in T3891 fibroblast by quantitative RT-PCR, ELISA and thymidine incorporation assay. Results : On $TGF-{\beta}1$ mRNA and protein synthesis in HepG2, $H_2O$, butanol and hexane fractions of Injin showed inhibitory effect in a dose-dependent way. In the study on $TGF-{\beta}1$ receptor, Smad family and PAI-1 mRNA in HepG2, $H_2O$, butanol and hexane fraction of Injin showed inhibitory effect on the expression of PAI-1 in a dose-dependent way. On the proliferation of T3891 fibroblast induced by $TGF-{\beta}1$, $H_2O$, ethylacetate and butanol fractions of Injin showed inhibitory effect. In the study on the factors affected by $TGF-{\beta}1$, $H_2O$, ethylacetate and butanol fractions of Injin showed inhibitory effect on CTGF, and $H_2O$, butanol, chloroform and hexane fractions showed inhibitory effect on the expression of collagen type I, whereas no fraction showed inhibitory effect on the expression of fibronectin Conclusion : These results show that each fraction of Injin acts as a fibrosis inhibitory factor by itself or in combination, ultimately inhibiting liver cirrhosis.

  • PDF