• Title/Summary/Keyword: SMAD

Search Result 190, Processing Time 0.02 seconds

Rebalancing SMAD7/SMAD3 Signaling Reduces Adhesion Formation during Flexor Tendon Healing

  • Ke Jiang;Yuling Li;Chao Xiang;Yan Xiong;Jiameng Jia
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.339-347
    • /
    • 2023
  • Transforming growth factor-β is a key factor in regulating adhesion formation during tendon healing. We investigated the effectiveness of SMAD family members, SMAD7 and SMAD3, in the TGF-β/Smad signaling during flexor tendon repair. Mouse flexor toe deep tendon rupture anastomosis models were made. On days 3, 7, 14, 21, and 28, the expressions of smad7 and smad3 in flexor tendon tissues were detected by RT-qPCR and western blot. Furthermore, postoperative intraperitoneal injections of SMAD7 agonists or SMAD3 antagonists were given. The degree of tendon healing was evaluated by adhesion testing and biomechanical experiments. Hematoxylin and eosin (HE) staining was used to observe the pathological changes. Immunohistochemistry was used to evaluate the expressions of collagen III, SMAD3, and SMAD7. The mRNA levels of matrix metalloproteinases, Mmp2 and Mmp9, and scleraxis (SCX) in flexor tendon tissue were detected by RT-qPCR. Smad3 expression increased and Smad7 expression decreased in flexor tendon tissue after injury. In addition, the SMAD7 agonist blocked SMAD3 phosphorylation. SMAD7 agonist and SMAD3 antagonist both improved adhesion formation during flexor tendon healing, and decreased the expressions of collagen III, Mmp9, and SCX, while increasing Mmp2 expression. This study provides a possible theoretical basis for the SMAD7-SMAD3 signal cascade during flexor tendon adhesion healing.

THE EFFECT OF BMP REGULATED SMAD PROTEIN ON ALKALINE PHOSPHATASE GENE EXPRESSION (Smad에 의한 alkaline phosphatase 유전자의 발현 조절기전)

  • Kim, Nan-Jin;Ryoo, Hyun-Mo;Kim, Hyun-Jung;Kim, Young-Jin;Nam, Soon-Hyeun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.2
    • /
    • pp.238-246
    • /
    • 2001
  • Bone morphogenetic proteins(BMPs), members of the transforming growth factor $\beta$(TGF-$\beta$) superfamily were first identified as the factors that induce ectopic bone formation in vivo, when implanted into muscular tissue. Especially BMP-2 inhibits terminal differentiation of C2C12 myoblasts and converts them into osteoblast lineage cells. In the molecular mechanism of the signal transduction of TGF-$\beta$ and related factors, intracellular signaling proteins were identified as Smad. In previous study, it has been reported that Smad 1 and Smad 5, which belong to the R-Smad family mediate BMP signaling, were involved in the induction of osteoblast differentiation in C2C12 cells. To understnad the role of Smads involved in osteogenic transdifferentiation in C2C12 cell, in present study, after we stably transfected C2C12 cells with each. Smad(Smad 1,Smad 5) expression vector, cultured for 3 days and stained for alkaline phophatase activity. ALP activity positive cells appeared in the Smad 1, Smad 5 stably transfected cell even in the abscence of BMP. After transiently co-transfected C2C12 cells with each Smad expression vector and ALP promoter, it was examined that Smad 1 and Smad 5 expression vector had increased about 2 fold ALP promoter activity in the abscence of BMP. These result suggested that both Smad 1 and Smad 5 were involved in the intracellular BMP signals which induce osteoblast differentiation in C2C12 cells. The effect of BMP on C2C12 cells with Smad 1, Smad 5 transfected were studied by using northern blot analysis. the treatment of BMP upregulated ALP mRNA level in three groups, especially upregulation of ALP was larger in Smad 1, Smad 5 transfected cell than control group. Pretreatment with cycloheximide($10{\mu}g/ml$), a protein synthesis inhibitor resulted in blocking the ALP gene expression even in BMP(100ng/ml) treated cell. These results suggested that Smad increased the level of ALP mRNA via the synthesis of a certain transcriptional regulatory protein.

  • PDF

Smad4 Mediated TGF-β/BMP Signaling in Tooth Formation Using Smad4 Conditional Knockout Mouse (치아 발생과정에서 Smad4의 역할)

  • Yoon, Chi-Young;Baek, Jin-A;Cho, Eui-Sic;Ko, Seung-O
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.2
    • /
    • pp.73-81
    • /
    • 2013
  • Purpose: Smad4 is a central mediator for transforming growth factor-${\beta}$/bone morphogenetic protein ($TGF-{\beta}/BMP$) signals, which are involved in regulating cranial neural crest cell formation, migration, proliferation, and fate determination. Accumulated evidences indicate that $TGF-{\beta}/BMP$ signaling plays key roles in the early tooth morphogenesis. However, their roles in the late tooth formation, such as cellular differentiation and matrix formation are not clearly understood. The objective of this study is to understand the roles of Smad4 in vivo during enamel and dentin formation through tissue-specific inactivation of Smad4. Methods: We generated and analyzed mice with dental epithelium-specific inactivation of the Smad4 gene (K14-Cre:$Smad4^{fl/fl}$) and dental mesenchyme-specific inactivation of Smad4 gene (Osr2Ires-Cre:$Smad4^{fl/fl}$). Results: In the tooth germs of K14-Cre:$Smad4^{fl/fl}$, ameloblast differentiation was not detectable in inner enamel epithelial cells, however, dentin-like structure was formed in dental mesenchymal cells. In the tooth germs of Osr2Ires-Cre:$Smad4^{fl/fl}$ mice, ameloblasts were normally differentiated from inner enamel epithelial cells. Interestingly, we found that bone-like structures, with cellular inclusion, were formed in the dentin region of Osr2Ires-Cre:$Smad4^{fl/fl}$ mice. Conclusion: Taken together, our study demonstrates that Smad4 plays a crucial role in regulating ameloblast and odontoblast differentiation, as well as in regulating epithelial-mesenchymal interactions during tooth development.

Inactivation of SMAD$_4$ Tumor Suppressor gene during Gastric Cancer Progression

  • Shin, Young-Kee
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2006.11a
    • /
    • pp.19-24
    • /
    • 2006
  • Mothers against decapentaplegic homolog 4 (SMAD4) is a tumor suppressor gene associated with gastrointestinal carcinogenesis. The aim of the present study was to characterize more precisely its role in the development and progression of human gastric carcinoma. In this study, using tissue microarray analysis of 283 gastric cancers and related lesions, we found loss of SMAD4 protein expression in the cytoplasm (36/114, 32%) and in the nucleus (46/114, 40%) of gastric cancer cells. The loss of nuclear SMAD4 expression in primary tumors correlated significantly with poor survival, and was an independent prognostic marker in multivariate analysis. We also found a substantial decrease in SMAD4 expression at both the RNA and protein level in several human gastric carcinoma cell lines. To identify the genetic and/or epigenetic mechanisms of altered SMAD4 expression in gastric carcinoma, loss of heterozygosity (LOH), promoter hypermethylation, and exon mutations were examined. We found that LOH (20/70, 29%) and promoter hypermethylation (4/73, 5%) were associated with the loss of SMAD4 expression. SMAD4 protein levels wore also affected in certain gastric carcinoma cell lines following incubation with Mc132, a proteasome inhibitor. Taken together, our results indicate that the loss of SMAD4, especially loss of nuclear SMAD4 expression, is involved in gastric cancer progression. The loss of SMAD4 in gastric carcinomas is due to several mechanisms, including LOH, hypermethylation, and proteasome degradation.

  • PDF

Itch E3 Ubiquitin Ligase Positively Regulates TGF-β Signaling to EMT via Smad7 Ubiquitination

  • Park, Su-Hyun;Jung, Eun-Ho;Kim, Geun-Young;Kim, Byung-Chul;Lim, Jae Hyang;Woo, Chang-Hoon
    • Molecules and Cells
    • /
    • v.38 no.1
    • /
    • pp.20-25
    • /
    • 2015
  • TGF-${\beta}$ regulates pleiotropic cellular responses including cell growth, differentiation, migration, apoptosis, extracellular matrix production, and many other biological processes. Although non-Smad signaling pathways are being increasingly reported to play many roles in TGF-${\beta}$-mediated biological processes, Smads, especially receptor-regulated Smads (R-Smads), still play a central mediatory role in TGF-${\beta}$ signaling for epithelial-mesenchymal transition. Thus, the biological activities of R-Smads are tightly regulated at multiple points. Inhibitory Smad (I-Smad also called Smad7) acts as a critical endogenous negative feedback regulator of Smad-signaling pathways by inhibiting R-Smad phosphorylation and by inducing activated type I TGF-${\beta}$ receptor degradation. Roles played by Smad7 in health and disease are being increasingly reported, but the molecular mechanisms that regulate Smad7 are not well understood. In this study, we show that E3 ubiquitin ligase Itch acts as a positive regulator of TGF-${\beta}$ signaling and of subsequent EMT-related gene expression. Interestingly, the Itch-mediated positive regulation of TGF-${\beta}$ signaling was found to be dependent on Smad7 ubiquitination and its subsequent degradation. Further study revealed Itch acts as an E3 ubiquitin ligase for Smad7 polyubiquitination, and thus, that Itch is an important regulator of Smad7 activity and a positive regulator of TGF-${\beta}$ signaling and of TGF-${\beta}$-mediated biological processes. Accordingly, the study uncovers a novel regulatory mechanism whereby Smad7 is controlled by Itch.

Bone Morphogenetic Protein 2-induced MAPKs Activation Is Independent of the Smad1/5 Activation

  • Jun, Ji-Hae;Ryoo, Hyun-Mo;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.34 no.2
    • /
    • pp.115-121
    • /
    • 2009
  • Bone morphogenetic protein (BMP) 2 is a potent osteogenic factor. Although both Smad1/5 and mitogenactivated protein kinases (MAPKs) are activated by BMP2, the hierarchical relationship between them is unclear. In this study, we examined if BMP2-stimulated MAPK activation is regulated by Smad1/5 or vice versa. When C2C12 cells were treated with BMP2, the activation of extracellular signal-regulated kinase (ERK), p38 MAPK and c-Jun-N-terminal kinase was evident within 5 min. The knockdown of both Smad1 and Smad5 by small interfering RNA did not affect the activation of these MAPKs. In addition, neither the overexpression of Smad1 nor Smad5 induced ERK activation. When ERK activation was induced by constitutively active MEK1 expression, the protein level and activation of Smad1 increased. Furthermore, the inhibition of constitutively active BMP receptor type IB-induced ERK activation significantly suppressed Smad1 activation. These results indicate that Smad1/5 activation is not necessary for BMP2-induced MAPK activation and also that ERK positively regulates Smad1 activation.

Smad4 Expression in Hepatocellular Carcinoma Differs by Hepatitis Status

  • Yao, Lei;Li, Fu-Jun;Tang, Zhi-Qiang;Gao, Shuang;Wu, Qe-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1297-1303
    • /
    • 2012
  • Aims: Primary hepatocellular carcinoma (HCC) is a common malignancy often related to hepatitis viral infection. Smad4 is known to mediate the TGF-${\beta}$ pathway to suppress tumorigenesis. However, the function of Smad4 in HCC is still controversial. In this study we compared levels of Smad4 in HCC tissues with or without hepatitis virus infection and adjacent normal-appearing liver. Methods: Samples from HCC patients were analyzed for Smad4 protein and mRNA expression by immunohistochemistry (IHC), RT-PCR and Western blotting. Results: We found that tumor tissues expressed less Smad4 mRNA and protein than the adjacent tissues. Most HCC tumor tissues were negative for Smad4 in IHC staining, while the majority of adjacent tissues were positively stained. Interestingly, protein levels were higher in HCC tissues with viral hepatitis than those without virus infection. Suppression of expression appeared closely related to HCC, so that Smad4 appears to function as a tumor suppressor gene (TSG). Conclusion: Patients with hepatitis viral infection, at higher risk for HCC, exhibited increased Smad4 protein expression suggesting hepatitis virus may modulate Smad4 expression, which is functionally distinct from its putative role as a TSG. Smad4 expression may thus be an applicable marker for diagnosis and/or a target to develop therapeutic agents for HCC.

Gene Expression of Smad3 and Estrogen Receptor-related $Receptor\;{\beta}$ like 1 in Sea Urchin, Strongylocentrotus nudus (둥근성게(Strongylocentrotus nudus)의 Smad3와 Estrogen Receptor-related $Receptor\;{\beta}$ like 1 유전자 발현)

  • Jun, Yu-Jung;Sohn, Young-Chang
    • Development and Reproduction
    • /
    • v.11 no.1
    • /
    • pp.43-47
    • /
    • 2007
  • Smad proteins mediate transforming growth $factor(TGF)-{\beta}$ signaling and play a pivotal role in embryonic development. The estrogen receptor-related receptors(ERRs), which are structurally similar to estrogen receptors, are members of orphan nuclear receptor in the nuclear receptor superfamily and their functions are known to be involved in the formation of extra-embryonic ectoderm. To investigate the involvement of Smad3 and $ERR{\beta}$ like 1 in reproductive activities and embryogenesis in marine invertebrate, we examined gene expression of Smad3 and $ERR{\beta}$ like 1 in Strongylocentrotus nudus during their seasonal changes and embryonic development using real-time polymerase chain reaction. The Smad3 mRNA levels in gonad showed an increasing pattern from February to June 2004 but decreased at August(spawning season) followed by an elevation of the levels at October and December 2004. The mRNA levels of the $ERR{\beta}$ like 1 significantly elevated during the spawning season. During embryonic development, Smad3 mRNA levels at $8{\sim}16$ cell stages were significantly higher than those of other stages, whereas the mRNA of the $ERR{\beta}$ like 1 was significantly high levels at late development stages, i.e., blastular, gastrula and plutei stages. These results suggest that the Smad3 could be involved at least in part in the early cleavage stages and the $ERR{\beta}$ like 1 may play an important role in the spawning season and late developmental stage in the sea urchin.

  • PDF

Smad4 mediates malignant behaviors of human ovarian carcinoma cell through the effect on expressions of E-cadherin, plasminogen activator inhibitor-1 and VEGF

  • Chen, Chen;Sun, Ming-Zhong;Liu, Shuqing;Yeh, Dongmei;Yu, Lijun;Song, Yang;Gong, Linlin;Hao, Lihong;Hu, Jun;Shao, Shujuan
    • BMB Reports
    • /
    • v.43 no.8
    • /
    • pp.554-560
    • /
    • 2010
  • Smad4 is involved in cancer progression and metastasis. Using a pair of human syngeneic epithelial ovarian cancer cells with low (HO-8910) and high (HO-8910PM) metastatic abilities, we aimed to reveal the role of Smad4 in ovarian cancer metastasis in vitro. Smad4 was down-regulated in HO-8910PM cell line relative to HO-8910 by implicating Smad4 was probably a potential tumor suppressor gene for ovarian cancer. Re-expression of Smad4 decreased the migration ability and inhibited the invasion capacity of HO-8910PM, while promoted the cell adhesion capacity for HO-8910PM. The stable expression of Smad4 increased the expression of E-cadherin, reduced the expression of plasminogen activator inhibitor-1 (PAI-1) and slightly down-regulated the expression of VEGF. Smad4 suppresses human ovarian cancer cell metastasis potential through its effect on the expressions of PAI-1, E-cadherin and VEGF. Results from current work implicate Smad4 might suppress the invasion and metastasis of human ovarian tumor cells through a TGF-$\beta$/Smad-mediated pathway.

Zinc upregulates bone-specific transcription factor Runx2 expression via BMP-2 signaling and Smad-1 phosphorylation in osteoblasts

  • Cho, Young-Eun;Kwun, In-Sook
    • Journal of Nutrition and Health
    • /
    • v.51 no.1
    • /
    • pp.23-30
    • /
    • 2018
  • Purpose: Runx2 (runt-related transcription factor 2), a bone-specific transcription factor, is a key regulator of osteoblast differentiation and its expression is induced by the activation of BMP-2 signaling. This study examined whether zinc modulates BMP-2 signaling and therefore stimulates Runx2 and osteoblast differentiation gene expression. Methods: Two osteoblastic MC3T3-E1 cell lines (subclones 4 as a high osteoblast differentiation and subclone 24 as a low osteoblastic differentiation) were cultured in an osteogenic medium (OSM) as the normal control, Zn-($1{\mu}M$ Zn) or Zn+($15{\mu}M$ Zn) for 24 h. The genes and proteins for BMP-2 signaling (BMP-2, Smad-1/p-Smad-1), transcription factors (Runx2, osterix), and osteoblast differentiation marker proteins were assessed. Results: In both cell lines, BMP-2 mRAN and protein expression and extracellular BMP-2 secretion all decreased in Zn-. The expression of Smad-1 (downstream regulator of BMP-2 signaling) and p-Smad-1 (phosphorylated Smad-1) also downregulated in Zn-. Furthermore, the expression of the bone-specific transcription factors, Runx2 and osterix, decreased in Zn-, which might be due to the decreased BMP-2 expression and Smad-1 activation (p-Smad-1) by Zn-, because Runx2 and osterix both are downstream in BMP-2 signaling. Bone marker gene expression, such as alkaline phosphatase (ALP), collagen type I (COLI), osteocalcin, and osteopontin were also downregulated in Zn-. Conclusion: The results suggest that a zinc deficiency in osteoblasts suppresses the BMP-2 signaling pathway via the suppression of Smad-1 activation, and this suppressed BMP-2 signaling can cause poor osteoblast differentiation.