• Title/Summary/Keyword: SM45C

Search Result 315, Processing Time 0.024 seconds

Finite element analysis for surface hardening of SM45C round bar by diode laser (다이오드 레이저를 이용한 SM45C 환봉 표면경화 열처리의 유한요소해석)

  • Cho, Hae-Yong;Kim, Kwan-Woo;Lee, Jae-Hoon;Suh, Jeong;Kim, Jong-Do
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.683-688
    • /
    • 2007
  • Surface heat treatment of SM45C round bar by diode laser was simulated to find it's condition by using commercial finite element code MARC. Due to axisymmetric geometry, a quarter of model for SM45C round bar was considered and user subroutines were applied to boundary condition for the heat transfer. Material properties such as conductivity, specific heat and mass density were given as a function of temperature. Rotation speed of round bar and feed rate of beam were considered to design heat source model. Shape parameter values of heat source were determined by beam profile. As results, Three dimensional heat source model for diode laser beam conditions of surface hardening has been designed by the comparison between the finite element analysis results and experimental data on SM45C round bar. Diode laser surface hardening for SM45C round bar was successfully simulated and it should be useful to determine optimal heat treatment condition.

  • PDF

Case Study on the Load-Deflection and Acoustic Emission Analysis of SM45C Coupons with a Circular Hole Defect under Tensile Loading (원공결함을 갖는 SM45C 인장시험편의 강도해석과 음향방출에 관한 사례연구)

  • Woo, Chang-Ki;Rhee, Zhang-Kyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.50-58
    • /
    • 2008
  • The SM45C metallic coupons have been tested under static tensile loading with acoustic emission (AE) as the load-deflection curve mainly. In this study, we used AE to detect the yielding of material and AE techniques was applied to rapidly estimate the mechanical characteristics of a material. First, coupons without an artificial defect were tested at different cross-head speed. For all cases in this analysis, yielding point of SM45C coupons did not appear definitely compared to mild steel, whereas coupons start to generate AE counts upon yielding. So all cases are normalized to know the possibility of accelerated life test of a material. And next, coupons with different from sizes of circular hole defects were tested at the same cross-head speed of 5 mm/min. Results were classified into 3 classes and analyzed by AE amplitude & signal strength as a function of time. Summarizing the specific conclusions, we need to additional research considering plate with width-ratio in order to estimate the fracture mechanism.

A Study on the Mechanical Properties of the Friction Welding with Solid Shaft of SM45C (SM45C 중실축의 마찰용접 기계적 특성에 관한 연구)

  • Koo, Keon Seop
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.932-937
    • /
    • 2012
  • In the presented study, SM45C carbon steel parts were joined by friction welding. The welding process was carried out under optimized conditions using statistical approach. The study of SM45C is conducted with various combinations of process parameters. Parameter optimization, microstructure and mechanical property correlation are the major contribution of the study. The welded joints were produced by varying spindle revolution speed, friction pressure, upset pressure and burn-off length. Tension tests were applied to welded parts to obtain the strength of the joints. Fracturs properties were additionally obtained experimentally under fluctuated tensile loads. Microstructures using microphotographs were examined in the weld interface and weld region and heat affected zone and base metal and flash zone of welded parts. Finally, Hardness variations in welding zone and base metal were also obtained. Through these tests, the optimum conditions of parameters for ${\phi}20$ SM45C in friction welding were obtained when the friction spindle revolution was 1,950 rpm, the friction pressures was 30 MPs, upset pressures was 50 MPs.

Laser surface hardening characterization of SM45C (SM45C의 레이저 표면경화특성)

  • Shin Ho-Jun;Yoo Young-Tae;Ahn Dong-Gyu;Im Kiegon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.246-251
    • /
    • 2005
  • Laser surface hardening is an effective technique used to improve the tribological properties and also to increase the service life of automobile components such as camshafts, crankshatfs, lorry brake drums and gears. High power $CO_2$ lasers and Nd:YAG lasers are employed for localized hardening of materials and hence are of potential application in the automobile industries. The heat is conducted rapidly into the bulk of the specimen causing self-quenching to occur and the formation of martensitic structure. In this investigation, the microstructure features occurring in Nd:YAG laser hardening SM45C steel are discussed with the use of optical microscopic and scanning electron microscopic analysis. Moreover, This paper describes the optimism of the processing parameters for maximum hardened depth of SM45C steel specimens of 3mm thickness by using CW Nd:YAG laser. Travel speed was varied from 0.6m/min to 1.0m/min. The maximum hardness and case depth fo SM45C steel are 780Hv and 0.4mm by laser hardening.

  • PDF

Effects of cooling rate on Microstructure and Bond Strength in WC-Co/Cu/SM45C steel joint (WC-Co/Cu/SM45C강접합에 미세조직 및 접합강도에 미치는 냉각속도의 영향)

  • 정승부;양훈모
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.104-111
    • /
    • 1999
  • The interfacial microstructure and bond strength were examined for WC-Co/Cu/SM45C steel join using a nickel-plated copper in vacuum at 1323K for 0.6ks∼3.6ks. After bonding, microstructure in bonding interface was observed by OM(Optical Microscopy), SEM(Scanning Electron Microscopy) and EPMA(Eelectron Probe Micro Analyzer). The oil cooling was carried out at 353K, the cooling rate in air and furnace was 22K/s and 4.4K/s. respectively. It was found that dendritic widths increased with the content of cobalt and bonding times at 1323K. As a whole, bond strength values at the same bonding condition decreased in this order: WC-13wt.%Co/SM45Csteel. WC-8wt.%Co/SM45Csteel and WC-4wt.%Co/SM45Csteel. The bond strength of WC-13wt.%Co/S45C steel joint in oil cooling was 273MPa. This value was greatly higher than those of 125MPa in furnace cooling and 93MPa in air cooling at 1323K for 0.6ks. The bond strength values were found to be closely associated with the content of cobalt in WC-Co and cooling rate.

  • PDF

A Study on the Mechanical Properties of the Friction Welding with Hollow and Solid Shaft of SM45C (SM45C의 중실축과 중공축의 마찰용접 특성에 관한 연구)

  • Koo, Keon-Seop;Choe, Won-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.841-846
    • /
    • 2010
  • The present study examined the mechanical properties of the friction welding with hollow and solid shaft of SM45, of which the diameter is 25.2mm and 33mm. Friction welding was conducted at welding conditions of 2,000rpm, friction pressure of 50MPa, upset pressure of 70MPa, friction time of 0.4sec to 1.4sec by increasing 0.2sec, upset time of 2.0 sec including variable such as friction time are following. Under these conditions, a tensile test, a hardness test and a microstructure of weld interface were studied. The results were as follows : When the friction time was 1.0 seconds under the conditions, the maximum tensile strength of the friction weld happened to be 1,094MPa, which is 120% compared with the tensile strength of SM45C base metal. The upset length linearly increased as friction time increased. According to the hardness test, the hardness distribution of the weld interface was formed from 475Hv to 739Hv. HAZ(Heat Affected Zone) was formed from the weld interface to 2mm of SM45C.

A Study on Friction Welding of SM45C to SCM4 Steel Bars and the Fatigue Properties (SM45C와 SCM4의 마찰용접 및 피로특성에 관한 연구)

  • O, Se-Gyu;Kim, Bu-An;Kim, Seon-Jin;Nam, Sang-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.112-121
    • /
    • 1988
  • A study on friction welding of carbon steel bar (SM45C) to chrome molybedenum steel bar(SCM4) is examined experimentally through tensile test, hardness test, microstructure test and fatigue test. so, this paper deals with optimizing the welding concitions and analyzing various mechanical properties about friction welds of SM45C to SCM4 steel bars. The results obtained are summarized as follows; 1) For friction welded joints of SM45C to SCM4 steel bars, the total upset(U)increases linearly with an increase of heating time ($t_{1}$) till 6s. 2) The determined optimum welding conditions are heating time ($t_{1}$)2s, upsetting time($t_{2}$), 3s, heating pressure($p_{1}$), 4kgf/$mm^{2}$(39.2MPa), upsetting pressure($p_{2}$, 8kgf/mm$^{2}$(78.4MPa) and rotating speed(N), 2, 000rpm when the total upset(U) is 3.4mm, resulting in a computed relationship between the joint tensile strength .sigma.$_{t}$ (kgf/mm$^{2}$and the total upset U(mm); .sigma.$_{t}$ =$0.21U^{3}$ - $3.38U^{2}$ +17.03U + 66.00 3) As the elongation is increased more and more, the fracture position becomes away from weld interface and the fractures are similar to those of SM45C. Fracture is taken place on SM45C side. 4) The weld interface of two dissimilar materials is mixed strongly, and the heat affected zone is about 2.0mm at SM45C while about 2.7 mm at SCM4 side. Therefore, the welded zone and heat affected zone are very narrow, comparing with those of the joints welded by the other welding methods. 5) The fatigue strengths at N=10$^{6}$ cycles of SM45C, SCM4 and friction welded joints are 23kgf/$mm^{2}$, 33kgf/$mm^{2}$(220.5 MPa), and 22.5kgf/$mm^{2}$(220.5MPa) respectively, and fracture at friction welded joint takes place at the side of SM45C. 6) The hardness of the friction weld interface is 3 times higher than that of base metal. 7) Fatigue strength of friction welded joint is higher than that of base metal. 8) Notch sensitivity factor of friction welded joint is lower than that of base metal.

  • PDF

Fatigue Behavior of Friction Welded Material of Domestic Dissimilar Steels - In Case of SM 45C to SUS304 Friction Welded Steel - (國산 異種鋼을 摩擦壓接한 경우의 疲勞擧動)

  • 송삼홍;박명과
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.953-962
    • /
    • 1987
  • Domestic dissimilar structural steels, SM 45 C and SUS304 were friction welded under optimal welding condition and the micro-artificial holes were drilled at SM 45 C base metal, SM 45 C HAZ, welded zone, SUS 304 HAZ, and SUS 304 base metal for fatigue behavior tests. In this study, the fatigue limit and the behavior of micro-crack propagation, crack propagation rate, and its dependency on stress intensity factor under the low stress level and high stress level of bending stress have been investigated. The results obtained are as follows. (1) The fatgiue strength of the portion of SM45C B.M., SM45C HAZ, welded zune, SUS304 HAZ and SUS304 B.M. on notched friction welded specimens are 20 kgf/mm$^{2}$, 32 kgf/mm$^{2}$, 27kgf/mm$^{2}$, 29kgf/mm$^{2}$, and 29kgf/mm$^{2}$, respectively. (2) The fatigue strength of welded zone of unnotched and notched specimens are 32.5kgf/mm$^{2}$, and 27kgf/mm$^{2}$, respectively. (3) Micro-crack initiation in the welded zone, HAZ, and each base metals occurrs simultaneously in front and rear of micro-hole tips in the view of the rotational directions. (4) Fatigue crack propagates more slowly in the welded zone than in another protions of specimen, regardless of the magnitude of the stress level. (5) Fatigue crack propagation rates were plotted as a function of stress intensity range. The value of m in the equation da/dN=C(.DELTA.K)$^{m}$ was found to range from 2.09-2.55 in this study.

Optimization of Spheroidizing Annealing Conditions in SM45C Steel (SM45C강의 구상화 어닐링조건 최적화 연구)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.3
    • /
    • pp.149-155
    • /
    • 2006
  • The effects of eight types of spheroidizing annealing conditions including annealing temperature, annealing time, cooling rate, and gas atmosphere in the annealing furnace on the microstructure were determined in SM45C steel which has been widely used for automotive parts. The well-developed spheroidized structure and minimum hardness were obtained when the steel was heat-treated 6 hours at $740^{\circ}C$, cooled to $710^{\circ}C$ at a cooling rate of $24^{\circ}C/h$, and then kept for 7 hours at the $710^{\circ}C$ followed by air cooling. In order to increase the productivity and to save the manufacturing cost, it is desirable to apply a faster cooling rate in the spheroidizing annealing. It was found that air cooling was the fastest cooling rate applicable to the SM45C steel. The steel heat treated in air showed the decarburized layer of about $110{\mu}m$ in thickness at the surface of the specimen, resulting in serious problems in the quality of the quenched product.