• Title/Summary/Keyword: SM 490A steel

Search Result 53, Processing Time 0.026 seconds

Role of Bevel Angles Influenced on the Fatigue Life of Butt-welded Joints (맞대기 이음 용접의 피로수명에 베벨 각도가 미치는 역할)

  • Park, Jihwan;Han, Changwan;Jung, Seungbin;Park, Seonghun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.141-147
    • /
    • 2014
  • This study aims to investigate the influence of bevel angles on the fatigue life of V-groove butt-welded joints with back-plates made by SM490A steel material, generally used for excavators, because changes in the geometry, material and surface properties of welded regions affect the fatigue life of welded structures. Butt type test specimens were prepared by the $CO_2$ welding of rolled steel plates (SM50A steel) with a thickness of 13.5 mm at a welding speed of 30 cm/min and these Butt type test specimens had two different groove angles, which are $40^{\circ}$ (A type) and $30^{\circ}$ (B type). In order to investigate differences in fatigue life between two types, 4-point bending fatigue tests were conducted with a stress ratio of R=0.1 under the cyclic loading environment at a frequency of 5 Hz at room temperature. The fatigue life of A type specimens was approximately 7% higher than that of B type specimens. The stress concentration factors calculated by finite element analysis were 2.16 for A type and 2.25 for B type, whose difference was caused by the influence of the back-plates of butt-welded structures. The current results could provide important guidelines to determine the V-groove angle of butt-welded joints with a satisfactory fatigue life, although under severe operating conditions.

A Proposal for an Evaluation of Flexural Resistance of Longitudinally Stiffened Plate Girder with Slender Web (수평보강재로 보강된 세장 복부판을 갖는 플레이트 거더의 휨강도 평가 방법의 제안)

  • Park, Yong Myung;Lee, Kun Joon;Choi, Byung Ho;Back, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.2
    • /
    • pp.119-132
    • /
    • 2014
  • In this paper, a series of numerical analyses were performed to evaluate the flexural resistance of steel plate girder with longitudinally stiffened and slender web. The SM490 steel was adopted for the study and the flexural resistances evaluated from the numerical analysis were compared with those suggested by the AASHTO LRFD and the Eurocode 3 codes, respectively. It was found that the AASHTO LRFD code could considerably underestimate the flexural resistance as the web slenderness becomes smaller. This comes from the fact that current AASHTO LRFD code does not consider a possible increase of slenderness limits for compact and noncompct web, and also an additional effect of web restraint on the rotation of compression flange in longitudinally stiffened web. Therefore, the slenderness limits of web and flange have been newly proposed for the plate girders with longitudinally stiffened web and it is analytically verified that the flexural resistance can be appropriately estimated by applying the proposed slenderness limits to the AASHTO LRFD code.

Resisting Strength of Ring-Stiffened Cylindrical Steel Shell under Uniform External Pressure (균일외압을 받는 링보강 원형단면 강재 쉘의 강도특성)

  • Ahn, Joon Tae;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.1
    • /
    • pp.25-35
    • /
    • 2018
  • Resisting strength of ring-stiffened cylindrical steel shell under uniform external pressure was evaluated by geometrically and materially nonlinear finite element method. The effects of shape and amplitude of geometric initial imperfection, radius to thickness ratio, and spacing of ring stiffeners on the resisting strength of ring-stiffened shell were analyzed. The resisting strength of ring-stiffened cylindrical shells made of SM490 obtained by FEA were compared with design strengths specified in Eurocode 3 and DNV-RP-C202. The shell buckling modes obtained from a linear elastic bifurcation FE analysis were introduced in the nonlinear FE analysis as initial geometric imperfections. The radius to thickness ratios of cylindrical shell in the range of 250 to 500 were considered.

Evaluation of Mechanical Test Characteristics according to Welding Position in FCAW Heterojunction (FCAW 이종접합에서 용접자세에 따른 기계적 시험 특성 평가)

  • Cho, Byung-Jun;Lee, Soung-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.649-656
    • /
    • 2019
  • Flux cored arc welding (FCAW), which is used widely in many fields, such as shipyards, bridge structures, construction machinery, and plant industry, is an alternative to shielded metal arc welding (SMAW). FCAW is used largely in the welding of carbon and alloy steel because it can be welded in all poses and obtain excellent quality in the field under a range of working conditions. In this study, the mechanical properties of welded parts were analyzed after different welding of SS400 and SM490A using FCAW. The following conclusions were drawn. The tensile test results satisfied the KS standard tensile strength in the range of 400~510 N/mm2 in all welding positions. The bending test confirmed that most of the specimens did not show surface breakage or other defects during bending and exhibited sufficient toughness, even after plastic deformation. The hardness test results were lower than the standard value of 350 Hv of KS B 0893. Similar to the hardness test, were greater than the KS reference value. The macro test revealed no internal flaws, non-metallic inclusions, bubbles or impurities on the entire cross section of the weld, and there were no concerns regarding lamination.

Flexural Testing of Asymmetric Hybrid Composite Beams Fabricated from High-strength Steels (고강도강재를 적용한 비대칭 하이브리드 합성보의 휨거동 실험)

  • Jun, Su Chan;Han, Kyu Hong;Lee, Cheol Ho;Kim, Jin Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.217-228
    • /
    • 2017
  • Full-scale flexural testing of asymmetric H-shape hybrid composite beams was conducted in this study. In fabricating hybrid H-shape sections, high strength steels were utilized for the bottom flange while ordinary strength steels were used for the top flange and web. With adding a fully composite floor slab, a total of 8 hybrid composite beam specimens were tested. The primary objective was to develop the asymmetric hybrid H-shape composite beams with maximized flexural efficiency and investigate their flexural behavior. Not all the hybrid composite specimens tested in this study exhibited the plastic moment and reasonable deformability. In the specimens with high-strength bottom flange, the longitudinal shear crack of the slab along the beam axis often preceded the development of beam plastic moment, although the slab was designed as fully composite. The mechanical reason for this unexpected behavior is discussed. It is emphasized that the longitudinal shear strength of composite slab should be checked in designing hybrid composite beams utilizing high strength steels like in this study.

Flexural Strength of HSB Steel Girders Due to Inelastic Lateral-Torsional Buckling - Sections with Slender Web (HSB 강거더의 비탄성 횡비틂좌굴에 의한 휨강도 - 세장 복부판 단면)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.217-231
    • /
    • 2012
  • The flexural behavior of HSB I-girder with a non-slender web attributed to inelastic lateral-torsional buckling under uniform bending was investigated using nonlinear finite element analysis of ABAQUS. The girder was assumed to have a compact or noncompact web in order to prevent premature bend-buckling of the web. The unbraced length of the girder was selected so that inelastic lateral-torsional buckling governs the ultimate flexural strength. The compression flange was also assumed to be either compact or noncompact to prevent local buckling of the elastic flange. Both homogeneous sections fabricated from HSB600 or HSB800 steel and hybrid sections with HSB800 flanges and SM570-TMC web were considered. In the FE analysis, the flanges and web of I-girder were modeled as thin shell elements. Initial imperfections and residual stresses were imposed on the FE model. An elasto-plastic strain hardening material was assumed for steel. After establishing the validity of the present FE analysis by comparing FE results with test results in existing literature, the effects of initial imperfection and residual stress on the inelastic lateral-torsional buckling behavior were analyzed. Finite element analysis results for 96 sections demonstrated that the current inelastic strength equations for the compression flange in AASHTO LTFD can be applied to predict the inelastic lateral torsional buckling strength of homogeneous and hybrid HSB I-girders with a non-slender web.

A Study on Fatigue Life of Weld Method for Excavator Bucket (굴삭기 버킷 용접부의 피로수명에 관한 연구)

  • Park, K.D.;Jung, J.W.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.102-109
    • /
    • 2005
  • An attachment part of the construction equipment frequently claimed from the crack occurrence that takes especially at the bucket. therefore we execute the fatigue examination and changes the welding method at the same materials. we executed a fatigue crack propagation experiment and got the conclusions at the normal temperature and Frequency 10Hz. We carried out butt welding for structure steel of SM490A and make three kinds of specimen of different weld method each. The fatigue limit of CASE 1 was determined to the low than CASE 2, CASE 3. the CASE 2 putting the interval of the 2mm creates back plate and make fatigue limit to high. Bead shapes and weld surfaces shape influence on fatigue life of materials. Specially, the crack growth becomes starting point that gap of back-plate and boundary surface of bead. It is confirmed by fracture showing on this study.

  • PDF

Microstructure and wear performance of WC-6.5%Co cladding layer by electric resistance welding (저항 클래딩법에 의해 형성된 내마모성 WC-6.5Co 클래딩층의 미크로조직 및 내마모성능)

  • Lee, Jin-U;Bae, Myeong-Il;Kim, Sang-Jin;Lee, Yeong-Ho
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.120-122
    • /
    • 2006
  • This study deals with characterizations of microstructure and wear performance of a cladding layer, product on 1.9 mm-thick mild steel plate by the electric resistance welding, of composite metal powder of Coarse WC-6.5%Co and high carbon alloy(SHA). The cladding layer was examined and tested fur microstructural features, chemical composition, hardness, wear performance and wear mechanism. The cladding layer have two different matrix were observed by an optical microscope and EPMA. The one was the coarse WC-6.5Co structure. The other was the melted SHA with surrounding the WC-6.5Co structure. The hardness of WC-6.5Co was 1210HV. The hardness of SHA was 640HV. In comparison by wear rate, the cladding layer showed the remarkable wear performance that was 15 times of SM490 and about 62% of D2.

  • PDF

Evaluation of slip coefficient of slip critical joints with high strength bolts

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Kim, Kang-Seok;Kim, Woo-Bum
    • Structural Engineering and Mechanics
    • /
    • v.32 no.4
    • /
    • pp.477-488
    • /
    • 2009
  • A slip critical joint has various values to adopt the proper slip coefficient in various conditions of faying surfaces in the following codes: AISC, AIJ and Eurocode 3. However, the Korean Building Code still regulates the unique slip coefficient, 0.45, regardless of the diverse faying conditions. In this study, the slip resistance test, including five kinds of surface treatments were conducted to obtain the proper slip coefficients available to steel plate KS SM490A. The faying surfaces were comprised of a clean mill, rust, red lead paint, zinc primer, and shot blast treatment. The candidates for high strength bolts were torque-shear bolts, torque-shear bolts with zinc coating, and ASTM A490 bolts. Based on the test results, the specimens with a shot blasted surface and rusted surface exhibited $k_s$, 0.61, and 0.5, respectively. It is recommended that the specimens with zinc primer exhibit $k_s{\geq}0.40$. The clean mill treated surface had prominently lower values, 0.27. For red lead painted treatment, the thickness of the coating affects the determinant of slip coefficient, so it is necessary to establish a minimum $k_s$ of 0.2, with a coating thickness of 65 ${\mu}m$. During 1,000 hours of relaxation, the uncoated surfaces exhibited the loss of clamping force behind 3%, while the coated surfaces within a certain limited thickness exhibited the loss of clamping within a range of 4.71% and 8.37%.

An Evaluation of Fatigue Life and Strength of Lightweight Bogie Frame Made of Laminate Composites (경량 복합재 대차프레임의 피로수명 및 강도 평가)

  • Jeon, Kwang-Woo;Shin, Kwang-Bok;Kim, Jung-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.913-920
    • /
    • 2011
  • We describe the evaluation of the fatigue life and strength of a lightweight railway bogie frame made of glass fiber/epoxy 4-harness satin-woven composites. To obtain the S-N curve for the evaluation of the fatigue characteristics of the composite bogie frame, we performed a tension-compression fatigue test for composite specimens with different stacking sequences of the warp direction, fill direction, and $0^{\circ}/90^^{\circ}$ direction. We used a stress ratio (R) of -1, a frequency of 5 Hz, and an endurance limit of $10^7$. The fatigue strength of the composite bogie frame was evaluated by a Goodman diagram according to JIS E 4207. The results show that the fatigue life and strength of the lightweight composite bogie satisfy the requirements of JIS E 4207. Given its weight, its performance was better than that of a conventional metal bogie frame based on an SM490A steel material.