• Title/Summary/Keyword: SLOPE DEGREE

Search Result 469, Processing Time 0.076 seconds

A Stability Evaluation according to inclination of Upper Natural Slope in Soil Slope (토사사면의 상부자연사면 경사에 따른 안정성 평가)

  • Lee, Jeong-Yeob;Koo, Ho-Bon;Kim, Seung-Hyun;Kim, Seung-Hee
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.577-580
    • /
    • 2008
  • The purpose of this study is the stability evaluation of soil slope according to inclination of upper natural slope. Upper natural slope breeds loss of slope by inflow in slope of surface water by rainfall and fluctuation of amount of materials in slope through method of cutting slope according to degree of inclination. Basis of standard inclination does not consider of inclination of upper natural slope and is presented uniformly. Therefore, in this study, analyzed stability of inclination of upper natural slope through limit equilibrium analysis.

  • PDF

Integral Method of Stability Analysis and Maintenance of Slope (비탈면 안정해석과 유지관리의 통합해석기법)

  • Park, Mincheol;Yoo, Byeongok;Baek, Yong;Hwang, Youngcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.3
    • /
    • pp.27-35
    • /
    • 2016
  • Even if the various data analyzing methods were suggested to examine the measured slope behaviors, it is difficult to find methods or procedures for connecting the analyzed results of slope stability and measured slope data. This research suggests the analyzing methods combing the stability analysis and measured data based on progressive failure of slope. Slope failure analysis by time degradation were calculated by strength parameters composed of strength reduction coefficients, also which were compared to the measured data according to the variations of safety factor and displacement of slopes. The accumulated displacement curve were shown as 3rd degree polynomials by suggested procedures, which was the same as before researches. The reverse displacement velocity curves were shown as linear function for prediction of brittle slope failures, also they were shown as 3rd degree polynomials for ductile slope failures, which were the same as the suggested equation by Fukuzono (1985) and they were very similar behaviors to the in-situ failure cases.

THE EFFECTS OF POPULATION SIZE AND DOMINANCE OF QUANTITATIVE TRAIT LOCI (QTL) ON THE DETECTION OF LINKAGE BETWEEN MARKERS AND QTL FOR LIVESTOCK

  • Jeon, G.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.6
    • /
    • pp.651-655
    • /
    • 1995
  • A simulation study on detection of linkage between genetic markers and QTL in backcross design was conducted. The effects of various sample sizes and the degree of QTL dominance on detention of linkage were examined by using a simple regression analysis. The results indicated that as sample size increased, the standard error of the estimated slope became smaller. When the dominance effect of QTL was complete, the estimated slope tended to be negative but was statistically not significant at all with type I error of greater than 50%. With complete linkage between genetic Marker and QTL, the estimated intercept value was smallest but the estimated slope was largest as expected. In most cases with various degree of dominance and sample sizes, when the actual recombination rate became larger, greater values were obtained for the slope except in the case of complete dominance of QTL.

Slope Analysis of Mountain Trail Using Mobile GPS (휴대용 GPS에 의한 등산로 경사분석)

  • Lee, Hye-Suk;Jung, Gil-Sub;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.2
    • /
    • pp.81-90
    • /
    • 2009
  • Mountain trails play an important role in the daily life and health of the citizens, and also are major areas for recreation operators strive to balance the needs of pedestrian with the needs of wildlife and health improvement. In this view point, this research aims at analyzing the slope of mountain trails using mobile GPS and suggesting the suitable path to citizens for improving health. The result shows that the trail slope analysis by using mobile GPS could be effectively evaluated the degree of walk difficulty.

  • PDF

Evaluation of Failure Theories to Determine the Wood Strength Variation with Grain Slope

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.465-473
    • /
    • 2009
  • Three failure theories were studied to evaluate the wood strength variation with grain slope. Maximum stress theory, Tsai-Hill theory and Hankinson formula were presented to hypothesize the failure of wood according to grain slope to loading direction. Red pine and Japanese larch were used as materials to simulate failure strength prediction with grain slope. Calculation of strength results was that the strength of wood drops rapidly between parallel to grain orientation (0 degree) and 15 degree grain orientation. The strength of wood with grain orientation were somewhat different at small grain angles among failure theories, and this tendency was due to tension and compression distinction, and shear accounting in each theories. For the above 45 degree grain orientation, the predicted failure strength of wood with grain variation were very close in each failure theories and were useful in assessing failure strength of wood. The applicable these theories should be considered that the wood has different behavior in tension and compression, and this lead to different strength at small grain angles in each theories. Furthermore, reconsideration is needed to assess the failure strength of wood at small grain angles in Hankinson formula and further studies are necessary to accounting for shear behavior at small grain angles.

Automotive Headlight Control System Using Tilt and Photo Sensors (기울기 및 광센서를 이용한 자동차 헤드라이트 자동조절시스템)

  • Kim, Tae-Woong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.14-21
    • /
    • 2004
  • This automotive headlight control system is newly proposed that, under my slope degree of the driving mad(flat up-hill, and down-hill) at night driving, the reflecting mirror of the headlight can be automatically controlled for safe driving. At first whether or not any vehicle is driven near is checked by photo sensor. Secondly, using the slope degree of the automotive feedbacked from the tilt sensor, the servo motor with the headlight is controlled to be turned right or down to the suitable angle. The servo motor is appropriately controlled according to road conditions. The proposed headlight control system is designed on the basis of the tested illumination intensity obtained according to any slope degree of roads. Finally, it is confirmed that the test model works very well in the given road conditions and environments.

In-situ monitoring and reliability analysis of an embankment slope with soil variability

  • Bai, Tao;Yang, Han;Chen, Xiaobing;Zhang, Shoucheng;Jin, Yuanshang
    • Geomechanics and Engineering
    • /
    • v.23 no.3
    • /
    • pp.261-273
    • /
    • 2020
  • This paper presents an efficient method utilizing user-defined computer functional codes to determine the reliability of an embankment slope with spatially varying soil properties in real time. The soils' mechanical properties varied with the soil layers that had different degrees of compaction and moisture content levels. The Latin Hypercube Sampling (LHS) for the degree of compaction and Kriging simulation of moisture content variation were adopted and programmed to predict their spatial distributions, respectively, that were subsequently used to characterize the spatial distribution of the soil shear strengths. The shear strength parameters were then integrated into the Geostudio command file to determine the safety factor of the embankment slope. An explicit metamodal for the performance function, using the Kriging method, was established and coded to efficiently compute the failure probability of slope with varying moisture contents. Sensitivity analysis showed that the proposed method significantly reduced the computational time compared to Monte Carlo simulation. About 300 times LHS Geostudio computations were needed to optimize precision and efficiency in determining the failure probability. The results also revealed that an embankment slope is prone to high failure risk if the degree of compaction is low and the moisture content is high.

Fabrication of Thin Plate of Semisolid Material using Slope Plate Process and Development of Fabrication Apparatus (Slope plate 공법을 이용한 반응고 박판 및 제조 장치 개발)

  • Koo, Ja-Yoon;Bae, Jung-Woon;Jin, Chul-Kyu;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.32 no.1
    • /
    • pp.24-31
    • /
    • 2012
  • In this study, semi-solid thin plate of A 356 aluminum alloy was fabricated by using slope plate apparatus and vacuum pressurization. Slope plate was used to produce semi-solid material with spheroidal microstructures. After molten metal was poured into the slope plate connected to the pouring hole of die, semi-solid material flowed into the die cavity by vacuum degree. The primary crystals of the cast metal became spheroidal. In order to increase the working pressure, gas pressurization of U shape was designed for fabrication of thin plate. For 3 bar of gas pressure and 60 mmHg of vacuum degree, thin plate was fabricated without defects on surface.

Instability Analysis of Unsaturated Soil Slope Considering Wet Condition (습윤상태를 고려한 불포화 토사사면의 불안정성 해석)

  • Kim, Yong Min;Kim, Jaehong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1489-1498
    • /
    • 2013
  • The monolithically coupled finite element analysis for a deformable unsaturated soil slope is performed to investigate the effect of antecedent rainfall which is assumed by initial conditions varying degree of saturation (36, 51, 77%) in finite element analysis. The distributions of matric suction and deformation on slope surface obtained from numerical simulation show the instability of antecedent rainfall-induced unsaturated soil slope. Moreover, the numerical analysis using Drucker-Prager model can be checked if a soil slope has reached failure (trial failure criterion $f^{tr}$ >0, plastic behavior) or not (trial failure criterion $f^{tr}$ < 0, elastic behavior). It is found that displacement of slope surface layer increases and the matric suction on soil slope decreases with an increase of initial degree of saturation by antecedent rainfall. Especially, the matric suction of the soil slope in dry condition (S=36%) rapidly decreases rather than that in wet condition (S=51%) at the same rainfall duration. The results of the trial failure criterion ($f^{tr}$ > 0) show slope instability in the toe region and surface of the slopes.

A Study on the Stability Evaluation of Soil Slope according to inclination of upper Natural Slope (상부자연사면 경사에 따른 토사사면의 안정성 평가에 관한 연구)

  • Lee, Jeong-Yeob;Kim, Jin-Hwan;Lee, Jong-Hyun;Gu, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.580-585
    • /
    • 2004
  • The purpose of this study is the stability evaluation of soil slope according to inclination of upper natural slope. Upper natural slope breeds loss of slope by inflow in slope of surface water by rainfal1 and f1uctuation of amount of materials in slope through method of cutting slope according to degree of inclination. Basis of standard inclination does not consider of inclination of upper natural slope and is presented uniformly. Therefore, in this study, analyzed stability of inclination of upper natural slope through limit equilibrium analysis. Result is same as following. First, safety factor through limit equilibrium analysis is almost direct decrease when gradient of soil slope is 1:1.2, 1:1.5. However, when gradient of soil slope is 1:1.0, 1:0.7, if sinclination of upper natural slope are $20^{\circ}$, it shows tendency that decrease of safety factor becomes low rapidly. Second, when when gradient of soil slope is fixed, inclination of upper natural slope increase tendency(maximum 3.0 times) that decrease of safety factor.

  • PDF