• Title/Summary/Keyword: SLA

Search Result 538, Processing Time 0.029 seconds

Effect of Shading Level on Growth and Morphological Characteristics of Ligularia fischeri Seedling (차광수준이 곰취 유묘의 생장 및 형태적 특성에 미치는 영향)

  • Song, Ki Seon;Jeon, Kwon Seok;Kim, Chang Hwan;Yoon, Jun Hyuck;Park, Yong Bae;Kim, Jong Jin
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.88-94
    • /
    • 2014
  • This study was carried out to survey the early growth characteristics of Ligularia fischeri, plants of half-shaded grounds, primarily used as functional wild edible greens and examine its shading treatment to transplant seedling. The shading treatment was regulated with the shading level(full sunlight, 35%, 50%, 75%, and 95% of full sunlight). According to the experiment, the height was the highest under 75% of shading (17.3 cm), and root diameter was the highest under full sunlight (2.13 mm). It was found that fresh weight (leaf, shoot, root and whole) was the highest (1.784 g, 1.330 g, 0.791 g, 3.905 g respectively ) under 50% of shading. In case of dry weight, leaf, shoot and whole dry weight were surveyed the highest under 35% of shading, and root dry weight was the highest under full sunlight. It was found that S/R ratio and moisture contents (leaf, shoot, root and whole) were the highest under 95% of shading. Leaf area was the highest under 50% of shading ($39.3cm^2$) and the higher shading level, the higher SLA and LAR. It was surveyed that the higher shading level, the thinner leaf thickness. In case of root characteristics, it was showed that the relatively high height growth under 35%~75% of shading, excepting 95% of shading. As a result of surveying the whole experiment, it is concluded that the early growth of L. fischeri is more effective in producing it under 50% of shading.

Chlorophyll Contents and Growth Performances of the Five Deciduous Hardwood Species Growing Under Different Shade Treatments (광도 변화에 따른 5개 활엽수종의 엽록소 함량과 생장 특성)

  • Cho, Min-Seok;Kwon, Ki-Won;Kim, Gil-Nam;Woo, Su-Young
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.4
    • /
    • pp.149-157
    • /
    • 2008
  • We investigated chlorophyll contents and growth performances of five deciduous hardwood species growing in central temperate zone of Korean forest. Cornus controversa, Fraxinus rhynchophylla, Betula schmidtii, Prunus leveilleana, and Acer mono seedlings were grown under four different light intensity regime (full sunlight, $65{\sim}72%$, $29{\sim}40%$, and, $7{\sim}12%$ of the full sunlight) for the experiment. The chlorophyll contents of all of the species were highest in $7{\sim}12%$ of the full sunlight, while lowest under the full sunlight. The relative growth rate of root collar diameter and height were decreased with increasing shading level except for Acer mono that showed the highest relative growth rate under $29{\sim}40%$ of the full sunlight. Total biomass and root volumes of the seedlings studied decreased as the light intensity decreased with different shade levels. For Acer mono, however, the biomass and root volumes were highest in $29{\sim}40%$ of the full sunlight. The relative growth rate of root comparing to shoot decreased as shading increased, and as a result, the ratio of aboveground to belowground biomass increased. As the shading level increased, specific leaf area (SLA), leaf area ratio (LAR), and leaf weight ratio (LWR) of most species increased.

In vitro evaluation of the wear resistance of provisional resin materials fabricated by different methods (제작방법에 따른 임시 수복용 레진의 마모저항성에 관한 연구)

  • Ahn, Jong-Ju;Huh, Jung-Bo;Choi, Jae-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.2
    • /
    • pp.110-117
    • /
    • 2019
  • Purpose: This study was to evaluate the wear resistance of 3D printed, milled, and conventionally cured provisional resin materials. Materials and methods: Four types of resin materials made with different methods were examined: Stereolithography apparatus (SLA) 3D printed resin (S3P), digital light processing (DLP) 3D printed resin (D3P), milled resin (MIL), conventionally self-cured resin (CON). In the 3D printed resin specimens, the build orientation and layer thickness were set to $0^{\circ}$ and $100{\mu}m$, respectively. The specimens were tested in a 2-axis chewing simulator with the steatite as the antagonist under thermocycling condition (5 kg, 30,000 cycles, 0.8 Hz, $5^{\circ}C/55^{\circ}C$). Wear losses of the specimens were calculated using CAD software and scanning electron microscope (SEM) was used to investigate wear surface of the specimens. Statistical significance was determined using One-way ANOVA and Dunnett T3 analysis (${\alpha}=.05$). Results: Wear losses of the S3P, D3P, and MIL groups significantly smaller than those of the CON group (P < .05). There was no significant difference among S3P, D3P, and MIL group (P > .05). In the SEM observations, in the S3P and D3P groups, vertical cracks were observed in the sliding direction of the antagonist. In the MIL group, there was an overall uniform wear surface, whereas in the CON group, a distinct wear track and numerous bubbles were observed. Conclusion: Within the limits of this study, provisional resin materials made with 3D printing show adequate wear resistance for applications in dentistry.

NO2 and SO2 Reduction Capacities and Their Relation to Leaf Physiological and Morphological Traits in Ten Landscaping Tree Species (조경수 10개 수종에 있어 NO2, SO2 저감 능력과 잎의 생리적, 형태적 특성과의 관계)

  • Kim, Kunhyo;Jeon, Jihyeon;Yun, Chan Ju;Kim, Tae Kyung;Hong, Jeonghyun;Jeon, Gi-Seong;Kim, Hyun Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.3
    • /
    • pp.393-405
    • /
    • 2021
  • With increasing anthropogenic emission sources, air pollutants are emerging as a severe environmental problem worldwide. Accordingly, the importance of landscape trees is emerging as a potential solution to reduce air pollutants, especially in urban areas. This study quantified and compared NO2 and SO2 reduction abilities of ten major landscape tree species and analyzed the relationship between reduction ability and physiological and morphological characteristics. The results showed NO2 reduction per leaf area was greatest in Cornus officinalis (19.81 ± 3.84 ng cm-2 hr-1) and lowest in Pinus strobus (1.51 ± 0.81 ng cm-2 hr-1). In addition, NO2 reduction by broadleaf species (14.72 ± 1.32 ng cm-2 hr-1) was 3.1-times greater than needleleaf species (4.68 ± 1.26 ng cm-2hr-1; P < 0.001). Further, SO2 reduction per leaf area was greatest in Zelkova serrata (70.04 ± 7.74 ng cm-2 hr-1) and lowest in Pinus strobus (4.79 ± 1.02 ng cm-2 hr-1). Similarly, SO2 reduction by broadleaf species (44.21 ± 5.01 ng cm-2 hr-1) was 3.9-times greater than needleleaf species (11.47 ± 3.03 ng cm-2 hr-1; P < 0.001). Correlation analysis revealed differences in NO2 reduction was best explained by chlorophyll b content (R2 = 0.671, P = 0.003) and SO2 reduction was best described by SLA and length of margin per leaf area (R2 = 0.456, P = 0.032 and R2 = 0.437, P = 0.001, R2 = 0.872, P < 0.001, respectively). In summary, the ability of trees to reduce air pollutants was related to photosynthesis, evapotranspiration, stomatal conductance, and leaf thickness. These findings highlight effective reduction of air pollutants by landscaping trees requires comprehensively analyzing physiological and morphological species characteristics.

Decomposition of leaf litter of some evergreen broadleaf trees in Korea

  • Lee, Kyung Eui;Cha, Sangsub;Lee, Sang Hoon;Shim, Jae Kuk
    • Journal of Ecology and Environment
    • /
    • v.38 no.4
    • /
    • pp.517-528
    • /
    • 2015
  • Litter decomposition is an important process in terrestrial ecosystem. However, studies on decomposition are rare, especially in evergreen broadleaf trees. We collected the leaf litter of five evergreen broadleaf trees (Daphniphyllum macropodum, Dendropanax morbifera, Castanopsis cuspidata var. thunbergii, Machilus thunbergii and Quercus acuta), and carried out a decomposition experiment using the litterbag method in Ju-do, Wando-gun, Korea for 731 days from December 25, 2011 to December 25, 2013. Among the five experimental tree species, C. cuspidata var. thunbergii distribution was limited in Jeju Island, and D. macropodum was distributed at the highest latitude at Mt. Baekyang (N 35°40′). About 2% of the initial litter mass of D. macropodum and D. morbifera remained, while 20.9% remained for C. cuspidata var. thunbergii, 30.4% for M. thunbergii, and 31.6% for Q. acuta. D. macropodum litter decayed four times faster (k = 2.02 yr-1) than the litter of Q. acuta (k = 0.58 yr-1). The decomposition of litter was positively influenced by thermal climate such as accumulated mean daily air temperature (year day index) and precipitation, as well as by physical characteristics such as thickness (R2=0.939, P = 0.007) and specific leaf area (SLA) (R2 = 0.964, P = 0.003). The characteristics of chemical composition such as lignin (R2 = 0.939, P = 0.007) and water-soluble materials (R2 = 0.898, P = 0.014) showed significant correlations with litter decomposition. However, the nutrients in litter showed complicated species-specific trends. The litter of D. macropodum and D. morbifera had fast decomposition despite their low nitrogen concentration and high C/N ratio. This means that the litter decomposition was more strongly affected by physical characteristics than chemical composition and nutrient content. On the other hand, the litter of Q. acuta which had the slowest decay rate had a high amount of N and low C/N ratio. Thus, the decomposition of Q. acuta litter was more affected by the P content of the litter than the N content, although all litter had similar physical characteristics.

Evaluation of marginal and internal gaps of Ni-Cr and Co-Cr alloy copings manufactured by microstereolithography

  • Kim, Dong-Yeon;Kim, Chong-Myeong;Kim, Ji-Hwan;Kim, Hae-Young;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.3
    • /
    • pp.176-181
    • /
    • 2017
  • PURPOSE. The purpose of this study was to evaluate the marginal and internal gaps of Ni-Cr and Co-Cr copings, fabricated using the dental ${\mu}-SLA$ system. MATERIALS AND METHODS. Ten study dies were made using a two-step silicone impression with a dental stone (type IV) from the master die of a tooth. Ni-Cr (NC group) and Co-Cr (CC group) alloy copings were designed using a dental scanner, CAD software, resin coping, and casting process. In addition, 10 Ni-Cr alloy copings were manufactured using the lost-wax technique (LW group). The marginal and internal gaps in the 3 groups were measured using a digital microscope ($160{\times}$) with the silicone replica technique, and the obtained data were analyzed using the non-parametric Kruskal-Wallis H test. Post-hoc comparisons were performed using Bonferroni-corrected Mann-Whitney U tests (${\alpha}=.05$). RESULTS. The mean (${\pm}$ standard deviation) values of the marginal, chamfer, axial wall, and occlusal gaps in the 3 groups were as follows: $81.5{\pm}73.8$, $98.1{\pm}76.1$, $87.1{\pm}44.8$, and $146.8{\pm}78.7{\mu}m$ in the LW group; $76.8{\pm}48.0$, $141.7{\pm}57.1$, $80.7{\pm}47.5$, and $194.69{\pm}63.8{\mu}m$ in the NC group; and $124.2{\pm}52.0$, $199.5{\pm}71.0$, $67.1{\pm}37.6$, and $244.5{\pm}58.9{\mu}m$ in the CC group. CONCLUSION. The marginal gap in the LW and NC groups were clinically acceptable. Further improvement is needed for CC group to be used clinical practice.

Yield and Morphology of White Clover in Response to Infrequent, Frequent Defoliation and Their Alternations (예취빈도의 전환이 White Clover의 수량 및 형태적 특성에 미치는 영향)

  • 강진호;박진서
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.2
    • /
    • pp.221-227
    • /
    • 1995
  • White clover (Trifolium repens L) gives rise to either weak persistence or overdominance in the pastures. To get information on grazing method to surmount the problem, the experiment was done to measure the effect of infrequent, frequent and their alternations on harvest yield and morphological characteristics of the clover. Individual plants of Regal, Louisiana S-l, Grasslands Huia, and Aberystwyth S184 were grown in 22cm plastic pot containing a 2: 1: 1 soil: sand: Peat moss mixture for 27 days after transplanting 50-day seedlings raised on 3cm pots, and then their all fully expanded leaves are trimmed. Defoliation treatments were forced every 1 (CC, frequent), 4 week(RR,infrequent) or their alternations(CR, RC) after 8 weeks from the trimming. To analyze the treatment effects, plants were sampled on 4, 8, 12, and 16 weeks after the trimming. Harvest yield of infrequent defoliation (RR) was higher than that of frequent defoliation (CC). Leaf area and no. of leaves per plant, petiole length and stolon length per plant, moreover, showed the similar result to the yield but stolon length and leaf area per g were reverse. The alternation of infre-quent and then frequent defoliation (RC) had greater yield than that of their reverse (CR) although both alternations showed intermediate ones compared to CC and RR. Morphological characteristics, furthermore, related to the clover leaf were immediately changed by alternations of defoliation inter-val(RC and CR) while those done to the stolon were lasted longer thereafter(RC and CR). Harvest yields in RC and CR were positively correlated to leaf area and no. of leaves or stolon length per plant but negatively done to leaf area and stolon length per g. It is concluded that weak persistence or overdominance of white clover in pasture can be controlled by alternation of infrequent and then frequent defoliation or reverse.

  • PDF

Effects of Elevated CO2 and Temperature on the Leaf Morphological Responses of Quercus serrata and Quercus aliena, Potential Natural Vegetation of Riverine (CO2농도 및 온도 상승이 하천변 잠재자연식생인 졸참나무와 갈참나무 잎의 형태학적 반응에 미치는 영향)

  • Cho, Kyu-Tae;Kim, Hae-Ran;Jeong, Heon-Mo;You, Young-Han
    • Journal of Wetlands Research
    • /
    • v.15 no.2
    • /
    • pp.171-177
    • /
    • 2013
  • This study was conducted to find the leaf morphological responses of Quercus serrata and Q. aliena which are potential natural vegetation of riverine in Korea under elevated $CO_2$ and increased temperature. Rising $CO_2$ concentration was treated with 1.6 times than control(ambient) and increased temperature with $2.2^{\circ}C$ above the control(ambient) in the glass greenhouse. As a result, leaf width length, leaf lamina weight and leaf area of Q. serrata and Q. aliena was respectively increased, and number of leaves and specific leaf area(SLA) was decreased by elevated $CO_2$ and temperature. Leaf width length, leaf lamina length, leaf lamina weight, number of leaves, leaf area, and specific leaf area of Q. serrata were not statistically significant difference between control and treatment. Leaf width length and leaf weight of Q. aliena was increased, but specific leaf area was decreased. These results indicated that Q. aliena was to be sensitive than Q. serrata in response to global warming situation. According to the principal component analysis(PCA), two oak species were arranged based on factor 1 and 2 in the control and warming treatment. And change on the warming treatment was clearly distinguishable from the Q. aliena than Q. serrata.

The Fractural-Mechanical Properties and Durability of Lightweight Concrete Using the Synthetic Lightweight Aggregate (합성경량골재(SLA)를 사용한 경량콘크리트의 파괴, 역학적 특성 및 내구성)

  • Jo Byung-Wan;Park Seung-Kook;Park Jong-Bin;Daniel C. Jansen
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.19-25
    • /
    • 2005
  • Recycling of waste materials in the construction Industry is a useful method that can cope with an environment restriction of every country. In this study, synthetic lightweight aggregates are manufactured with recycled plastic and fly ash with 12 percent carbon. Nominal maximum-size aggregates of 9.5 mm were produced with fly ash contents of 0, 35, and $80\%$ by the total mass of the aggregate. An expanded clay lightweight aggregate and a normal-weight aggregate were used as comparison. Gradation, density, and absorption capacity are reported for the aggregates. Five batches of concrete were made with the different coarse aggregate types. Mechanical properties of the concrete were determined including density, compressive strength, elastic modulus, splitting tensile strength, fracture toughness, and fracture energy. Salt-scaling resistance, a concrete durability property, was also examined. Compressive and tensile strengths were lower for the synthetic aggregates; however, comparable fracture properties were obtained. Relatively low compressive modulus of elasticity was found for concretes with the synthetic lightweight aggregate, although high ductility was also obtained. As nv ash content of the synthetic lightweight aggregate increased, all properties of the concrete were improved. Excellent salt-scaling resistance was obtained with the synthetic lightweight aggregate containing 80 percent fly ash.

Effect Analysis of Compost Derived by Black Soldier Fly(Hermetia illucens L.) Using Plant Growth Analysis Method (식물성장해석 기법을 이용한 아메리카동애등에(Hermetia illucens L.) 분변토의 비료효과 분석)

  • Choi, Young-Cheol;Park, Kwan-Ho;Lee, Yonggu;Moon, Sung-Kyoung;Choi, Hansu
    • Journal of Sericultural and Entomological Science
    • /
    • v.51 no.2
    • /
    • pp.107-113
    • /
    • 2013
  • The black soldier fly larvae are able to decompose various organic wastes such as livestock manures and food wastes. We tested whether the quality of the insect derived compost, i.e. larval feces, was comparable to that of a commercial fertilizer. Chemical analysis of Hermetia. illucens compost was suitable as a fertilizer. When the kidney bean (Phaseolus vulgaris L.) was raised on the culture soil treated with the H. illucens compost, the growth of leaf area, total dry weight and leaf dry weight increased significantly. The H. illucens compost is thought to act as an increasing factor of RGR (relative growth rate) from the beginning of growth and also had a great effect on the relative growth rate throughout the late stage of growth. There is high statistical significance between NAR (net assimilation rate) and RGR (relative growth rate), but no significance between RGR and LAR (leaf assimilation rate) of the treatments. In addition, the treatment of H. illucens compost promoted the thickness of leaves from the beginning of growth and the tendency of thickening leaves from the beginning of growth and the effect continued throughout the late period of growth. When mixed with 50% of H. illucens compost rather than 25%, it showed the greater effect on the plant growth.